Monge-Kantorovich Duality in Optimal Transport with Nonadditive Measures on Finite Spaces

Kelvin Shuangjian Zhang

University of Waterloo

http://shuangjian.info/

joint work with Mario Ghossoub and David Saunders

Optimization under Ambiguity and Applications to Finance and Insurance INFORMS Annual Meeting 2022

October 18, 2022

▶ Transferable Utility Matching and Optimal Transport on finite spaces

- ► Transferable Utility Matching and Optimal Transport on finite spaces
- Optimal Transport with Nonadditive Measure marginals

- ► Transferable Utility Matching and Optimal Transport on finite spaces
- Optimal Transport with Nonadditive Measure marginals
- Explicit solutions

- ► Transferable Utility Matching and Optimal Transport on finite spaces
- Optimal Transport with Nonadditive Measure marginals
- Explicit solutions
- Cores

- ► Transferable Utility Matching and Optimal Transport on finite spaces
- Optimal Transport with Nonadditive Measure marginals
- Explicit solutions
- Cores
- Duality results

- ► Transferable Utility Matching and Optimal Transport on finite spaces
- Optimal Transport with Nonadditive Measure marginals
- Explicit solutions
- Cores
- Duality results
- Conclusion

Transferable Utility Matching and Optimal Transport

¹Monge (1781) Kelvin Shuangjian ZHANG Monge-Kantorovich Duality with Nonadditive Measures Let \mathcal{X} and \mathcal{Y} be non-empty finite sets, u and v be probability measures on \mathcal{X} and \mathcal{Y} , respectively. Denote by $\prod_{a}(u, v)$ the set of measures on $\mathcal{X} \times \mathcal{Y}$ that has the marginals u on \mathcal{X} and v on \mathcal{Y} . That is, Let \mathcal{X} and \mathcal{Y} be non-empty finite sets, u and v be probability measures on \mathcal{X} and \mathcal{Y} , respectively. Denote by $\prod_a(u, v)$ the set of measures on $\mathcal{X} \times \mathcal{Y}$ that has the marginals u on \mathcal{X} and v on \mathcal{Y} . That is,

 $\Pi_{a}(u, \mathbf{v}) = \{\pi | \pi \text{ is a measure on } \mathcal{X} \times \mathcal{Y} \text{ such that } \pi(A \times \mathcal{Y}) = u(A) \text{ and } \pi(\mathcal{X} \times B) = \mathbf{v}(B), \text{ for any } A \subseteq \mathcal{X}, B \subseteq \mathcal{Y}.\}$

¹Monge (1781)

Transferable Utility Matching and Optimal Transport

Let \mathcal{X} and \mathcal{Y} be non-empty finite sets, u and v be probability measures on \mathcal{X} and \mathcal{Y} , respectively. Denote by $\prod_{a}(u, v)$ the set of measures on $\mathcal{X} \times \mathcal{Y}$ that has the marginals u on \mathcal{X} and v on \mathcal{Y} . That is,

 $\Pi_{a}(u, \mathbf{v}) = \{\pi | \pi \text{ is a measure on } \mathcal{X} \times \mathcal{Y} \text{ such that } \pi(A \times \mathcal{Y}) = u(A) \text{ and } \pi(\mathcal{X} \times B) = \mathbf{v}(B), \text{ for any } A \subseteq \mathcal{X}, B \subseteq \mathcal{Y}.\}$

Given a continuous (or lower semi-continuous) function f, the optimal transport ¹ minimization problem is to find a minimizer of the following problem:

$$\inf_{\pi\in\Pi_{\mathfrak{a}}(u,v)}\pi(f):=\sum_{x\in\mathcal{X},y\in\mathcal{Y}}f(x,y)\pi(\{(x,y)\}).$$
(1)

¹Monge (1781)

Kelvin Shuangjian ZHANG

Monge-Kantorovich Duality with Nonadditive Measures

Transferable Utility Matching and Optimal Transport

Let \mathcal{X} and \mathcal{Y} be non-empty finite sets, u and v be probability measures on \mathcal{X} and \mathcal{Y} , respectively. Denote by $\prod_a(u, v)$ the set of measures on $\mathcal{X} \times \mathcal{Y}$ that has the marginals u on \mathcal{X} and v on \mathcal{Y} . That is,

 $\Pi_{a}(u, \mathbf{v}) = \{\pi | \pi \text{ is a measure on } \mathcal{X} \times \mathcal{Y} \text{ such that } \pi(A \times \mathcal{Y}) = u(A) \text{ and } \pi(\mathcal{X} \times B) = \mathbf{v}(B), \text{ for any } A \subseteq \mathcal{X}, B \subseteq \mathcal{Y}.\}$

Given a continuous (or upper semi-continuous) function g, the transferable utility matching (optimal transport maximization) problem is to find a maximizer of

$$\sup_{\pi\in \Pi_{a}(u,v)} \pi(g).$$
(2)

¹Monge (1781)

Kelvin Shuangjian ZHANG

Dual problem

▶ It is well known ¹ that

$$\inf_{\pi \in \Pi_{a}(u,v)} \pi(f) = \sup_{\phi \oplus \psi \le f} \sum_{x \in \mathcal{X}} \phi(x) u(\{x\}) + \sum_{y \in \mathcal{Y}} \psi(y) v(\{y\}), \quad (3)$$

where $\phi : \mathcal{X} \to \mathbf{R}$ and $\psi : \mathcal{Y} \to \mathbf{R}$.

¹Kantorovich (1942, 1948) ²Gale and Shapley (1962)

Kelvin Shuangjian ZHANG Monge-Kantorovich Duality with Nonadditive Measures

Dual problem

It is well known ¹ that

$$\inf_{\pi\in\Pi_a(u,v)}\pi(f) = \sup_{\phi\oplus\psi\leq f}\sum_{x\in\mathcal{X}}\phi(x)u(\{x\}) + \sum_{y\in\mathcal{Y}}\psi(y)v(\{y\}),\qquad(3)$$

where $\phi : \mathcal{X} \to \mathbf{R}$ and $\psi : \mathcal{Y} \to \mathbf{R}$.

► Similarly,

$$\sup_{\pi \in \Pi_{a}(u,v)} \pi(g) = \inf_{\phi \oplus \psi \ge g} \sum_{x \in \mathcal{X}} \phi(x) u(\{x\}) + \sum_{y \in \mathcal{Y}} \psi(y) v(\{y\})$$
(4)

¹Kantorovich (1942, 1948) ²Gale and Shapley (1962)

Kelvin Shuangjian ZHANG Monge-Kantorovich Duality with Nonadditive Measures

Dual problem

It is well known ¹ that

$$\inf_{\pi\in\Pi_a(u,v)}\pi(f) = \sup_{\phi\oplus\psi\leq f}\sum_{x\in\mathcal{X}}\phi(x)u(\{x\}) + \sum_{y\in\mathcal{Y}}\psi(y)v(\{y\}),\qquad(3)$$

where $\phi : \mathcal{X} \to \mathbf{R}$ and $\psi : \mathcal{Y} \to \mathbf{R}$.

► Similarly,

$$\sup_{\pi \in \Pi_a(u,v)} \pi(g) = \inf_{\phi \oplus \psi \ge g} \sum_{x \in \mathcal{X}} \phi(x) u(\{x\}) + \sum_{y \in \mathcal{Y}} \psi(y) v(\{y\})$$
(4)

▶ This connects to the notion of *stable matching*².

Kelvin Shuangjian ZHANG Monge-Kantorovich Duality with Nonadditive Measures

¹Kantorovich (1942, 1948) ²Gale and Shapley (1962)

Definition (Capacity)

Let \mathcal{Z} be a nonempty finite set, and let $2^{\mathcal{Z}}$ be the collection of all of its subsets. A function $\gamma : 2^{\mathcal{Z}} \to \mathbb{R}$ is called a *capacity*^a if $\gamma(\emptyset) = 0$, and $A \subseteq B$ implies $\gamma(A) \leq \gamma(B)$ for any $A, B \subset \mathcal{Z}$,

^aMontrucchio (2004)

Definition (Capacity)

Let \mathcal{Z} be a nonempty finite set, and let $2^{\mathcal{Z}}$ be the collection of all of its subsets. A function $\gamma : 2^{\mathcal{Z}} \to \mathbb{R}$ is called a *capacity* if $\gamma(\emptyset) = 0$, and $A \subseteq B$ implies $\gamma(A) \leq \gamma(B)$ for any $A, B \subset \mathcal{Z}$, *normalized* if $\gamma(\mathcal{Z}) = 1$.

Definition (Capacity)

Let \mathcal{Z} be a nonempty finite set, and let $2^{\mathcal{Z}}$ be the collection of all of its subsets. A function $\gamma : 2^{\mathcal{Z}} \to \mathbb{R}$ is called a *capacity* if $\gamma(\emptyset) = 0$, and $A \subseteq B$ implies $\gamma(A) \leq \gamma(B)$ for any $A, B \subset \mathcal{Z}$, *normalized* if $\gamma(\mathcal{Z}) = 1$.

Definition (Choquet integral)

Let \mathcal{Z} be a nonempty finite set, γ be a capacity on \mathcal{Z} , and $f: \mathcal{Z} \to \mathbb{R}_+$ be a nonnegative function on \mathcal{Z} . The Choquet integral of f with respect to γ is defined to be:

$$\gamma(f) := \int_0^\infty \gamma(\{f \ge t\}) \, dt. \tag{5}$$

For a function $g:\mathcal{Z}\rightarrow\mathbb{R}$ that is not necessarily non-negative, then

$$\gamma(g) := \int_0^\infty \gamma(\{g \ge t\}) dt + \int_{-\infty}^0 (\gamma(\{g \ge t\}) - \gamma(\mathcal{Z})) dt.$$
 (6)

Optimal Transport with capacity marginals

let μ and ν be two normalized capacities on \mathcal{X} and \mathcal{Y} , respectively. Denote by $\Pi(\mu, \nu)$ the set of capacities on $\mathcal{X} \times \mathcal{Y}$ that has the marginals μ on \mathcal{X} and ν on \mathcal{Y} . That is,

Optimal Transport with capacity marginals

let μ and ν be two normalized capacities on \mathcal{X} and \mathcal{Y} , respectively. Denote by $\Pi(\mu, \nu)$ the set of capacities on $\mathcal{X} \times \mathcal{Y}$ that has the marginals μ on \mathcal{X} and ν on \mathcal{Y} . That is,

 $\Pi(\mu, \nu) = \{\pi | \pi \text{ is a capacity on } \mathcal{X} \times \mathcal{Y} \text{ such that } \pi(A \times \mathcal{Y}) = \mu(A) \\ \text{and } \pi(\mathcal{X} \times B) = \nu(B), \text{ for any } A \subseteq \mathcal{X}, B \subseteq \mathcal{Y}. \}$

Optimal Transport with capacity marginals

let μ and ν be two normalized capacities on \mathcal{X} and \mathcal{Y} , respectively. Denote by $\Pi(\mu, \nu)$ the set of capacities on $\mathcal{X} \times \mathcal{Y}$ that has the marginals μ on \mathcal{X} and ν on \mathcal{Y} . That is,

 $\Pi(\mu, \nu) = \{\pi | \pi \text{ is a capacity on } \mathcal{X} \times \mathcal{Y} \text{ such that } \pi(A \times \mathcal{Y}) = \mu(A) \\ \text{and } \pi(\mathcal{X} \times B) = \nu(B), \text{ for any } A \subseteq \mathcal{X}, B \subseteq \mathcal{Y}. \}$

Given a continuous function f, the Optimal Transport problem on capacities aims to find optimizers of

$$\inf_{\pi\in\Pi(\mu,\nu)}\pi(f),\tag{7}$$

and

$$\sup_{\pi\in\Pi(\mu,\nu)}\pi(f).$$
 (8)

Here $\pi(f)$ is the Choquet integral.

Definition (floor and ceiling envelopes)

Let \mathcal{Z} be a nonempty finite set, and let $\mathcal{G} \subseteq 2^{\mathcal{Z}}$ be a collection of subsets containing \mathcal{Z} and \emptyset . Suppose that a function $G : \mathcal{G} \to \mathbb{R}_+$ satisfies $G(\emptyset) = 0$, and $G(A) \leq G(B)$ whenever $A, B \in \mathcal{G}, A \subseteq B$.

Definition (floor and ceiling envelopes)

Let \mathcal{Z} be a nonempty finite set, and let $\mathcal{G} \subseteq 2^{\mathcal{Z}}$ be a collection of subsets containing \mathcal{Z} and \emptyset . Suppose that a function $G : \mathcal{G} \to \mathbb{R}_+$ satisfies $G(\emptyset) = 0$, and $G(A) \leq G(B)$ whenever $A, B \in \mathcal{G}, A \subseteq B$. The capacity on \mathcal{Z} defined by:

$$G^*(B) = \inf_{B \subseteq A} G(A), \text{ for all } B \in 2^{\mathcal{Z}}$$
(9)

is called the ceiling envelope of G.

Definition (floor and ceiling envelopes)

Let \mathcal{Z} be a nonempty finite set, and let $\mathcal{G} \subseteq 2^{\mathcal{Z}}$ be a collection of subsets containing \mathcal{Z} and \emptyset . Suppose that a function $G : \mathcal{G} \to \mathbb{R}_+$ satisfies $G(\emptyset) = 0$, and $G(A) \leq G(B)$ whenever $A, B \in \mathcal{G}, A \subseteq B$. The capacity on \mathcal{Z} defined by:

$$G^*(B) = \inf_{B \subseteq A} G(A), \text{ for all } B \in 2^{\mathcal{Z}}$$
(9)

is called the ceiling envelope of *G*. The capacity defined by:

$$G_*(B) = \sup_{A \subseteq B} G(A), \text{ for all } B \in 2^{\mathcal{Z}}$$
 (10)

is called the floor envelope of G.

Given nonempty finite sets \mathcal{X}, \mathcal{Y} , we define $\mathcal{P}_{\mathcal{X}, \mathcal{Y}}$ to be the collection of all subsets of $\mathcal{X} \times \mathcal{Y}$ of the form $A \times B$ with $A \subseteq \mathcal{X}$ and $B \subseteq \mathcal{Y}$.

Given nonempty finite sets \mathcal{X}, \mathcal{Y} , we define $\mathcal{P}_{\mathcal{X}, \mathcal{Y}}$ to be the collection of all subsets of $\mathcal{X} \times \mathcal{Y}$ of the form $A \times B$ with $A \subseteq \mathcal{X}$ and $B \subseteq \mathcal{Y}$. We define $\mathcal{P}^*_{\mathcal{X}, \mathcal{Y}}$ to be the collection of all sets either of the form $\mathcal{X} \times B$ with $B \subseteq \mathcal{Y}$ or $A \times \mathcal{Y}$ with $A \subseteq \mathcal{X}$.

Given nonempty finite sets \mathcal{X}, \mathcal{Y} , we define $\mathcal{P}_{\mathcal{X}, \mathcal{Y}}$ to be the collection of all subsets of $\mathcal{X} \times \mathcal{Y}$ of the form $A \times B$ with $A \subseteq \mathcal{X}$ and $B \subseteq \mathcal{Y}$. We define $\mathcal{P}^*_{\mathcal{X}, \mathcal{Y}}$ to be the collection of all sets either of the form $\mathcal{X} \times B$ with $B \subseteq \mathcal{Y}$ or $A \times \mathcal{Y}$ with $A \subseteq \mathcal{X}$.

Given nonempty finite sets \mathcal{X} and \mathcal{Y} and capacities μ on \mathcal{X} and ν on \mathcal{Y} , we can define the function $G : \mathcal{P}_{\mathcal{X},\mathcal{Y}} \to \mathbb{R}_+$ by $G(A \times B) = \mu(A) \cdot \nu(B)$ for $A \times B \in \mathcal{P}_{\mathcal{X},\mathcal{Y}}$ with $A \subseteq \mathcal{X}$ and $B \subseteq \mathcal{Y}$.

Given nonempty finite sets \mathcal{X}, \mathcal{Y} , we define $\mathcal{P}_{\mathcal{X}, \mathcal{Y}}$ to be the collection of all subsets of $\mathcal{X} \times \mathcal{Y}$ of the form $A \times B$ with $A \subseteq \mathcal{X}$ and $B \subseteq \mathcal{Y}$. We define $\mathcal{P}^*_{\mathcal{X}, \mathcal{Y}}$ to be the collection of all sets either of the form $\mathcal{X} \times B$ with $B \subseteq \mathcal{Y}$ or $A \times \mathcal{Y}$ with $A \subseteq \mathcal{X}$.

Given nonempty finite sets \mathcal{X} and \mathcal{Y} and capacities μ on \mathcal{X} and ν on \mathcal{Y} , we can define the function $G : \mathcal{P}_{\mathcal{X},\mathcal{Y}} \to \mathbb{R}_+$ by $G(A \times B) = \mu(A) \cdot \nu(B)$ for $A \times B \in \mathcal{P}_{\mathcal{X},\mathcal{Y}}$ with $A \subseteq \mathcal{X}$ and $B \subseteq \mathcal{Y}$. Both the ceiling envelope G^* and the floor envelope G_* are capacites in $\Pi(\mu, \nu)$, showing in particular that

$\Pi(\mu,\nu)$ is always nonempty.

Definition (π^* and π_*)

For each $A \subseteq \mathcal{X} \times \mathcal{Y}$, define the following:

$$\pi^*(A) = \sup_{\pi \in \Pi(\mu,\nu)} \pi(A), \quad \pi_*(A) = \inf_{\pi \in \Pi(\mu,\nu)} \pi(A).$$
(11)

Definition (π^* and π_*)

For each $A \subseteq \mathcal{X} \times \mathcal{Y}$, define the following:

$$\pi^*(A) = \sup_{\pi \in \Pi(\mu,\nu)} \pi(A), \quad \pi_*(A) = \inf_{\pi \in \Pi(\mu,\nu)} \pi(A).$$
(11)

Theorem (Ghossoub-Saunders-Z., 2022)

 $\min_{\pi \in \Pi(\mu,\nu)} \pi(f) = \pi_*(f) \text{ and } \max_{\pi \in \Pi(\mu,\nu)} \pi(f) = \pi^*(f).$

For a set $M \subseteq \mathcal{X} \times \mathcal{Y}$, define

$$M_{\mathcal{X}} := \{ x \in \mathcal{X} : \exists z = (x, y) \in M \},$$
(12)

For a set $M \subseteq \mathcal{X} \times \mathcal{Y}$, define

$$M_{\mathcal{X}} := \{ x \in \mathcal{X} : \exists z = (x, y) \in M \},$$
(12)

and

$$\tilde{M}_{\mathcal{X}} := \{ x \in \mathcal{X} : (x, y) \in M, \ \forall y \in \mathcal{Y} \} = ((M^c)_{\mathcal{X}})^c,$$
(13)

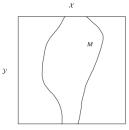
Characterization

For a set $M \subseteq \mathcal{X} \times \mathcal{Y}$, define

$$M_{\mathcal{X}} := \{ x \in \mathcal{X} : \exists z = (x, y) \in M \},$$
(12)

and

$$\tilde{M}_{\mathcal{X}} := \{ x \in \mathcal{X} : (x, y) \in M, \ \forall y \in \mathcal{Y} \} = ((M^c)_{\mathcal{X}})^c,$$
(13)



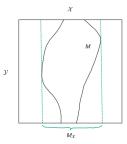
Characterization

For a set $M \subseteq \mathcal{X} \times \mathcal{Y}$, define

$$M_{\mathcal{X}} := \{ x \in \mathcal{X} : \exists z = (x, y) \in M \},$$
(12)

and

$$\tilde{M}_{\mathcal{X}} := \{ x \in \mathcal{X} : (x, y) \in M, \ \forall y \in \mathcal{Y} \} = ((M^c)_{\mathcal{X}})^c,$$
(13)



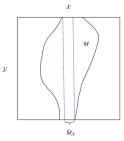
Characterization

For a set $M \subseteq \mathcal{X} \times \mathcal{Y}$, define

$$M_{\mathcal{X}} := \{ x \in \mathcal{X} : \exists z = (x, y) \in M \},$$
(12)

and

$$\tilde{M}_{\mathcal{X}} := \{ x \in \mathcal{X} : (x, y) \in M, \ \forall y \in \mathcal{Y} \} = ((M^{c})_{\mathcal{X}})^{c},$$
(13)



Recall

$$\max_{\pi\in\Pi(\mu,\nu)}\pi(f)=\pi^*(f)$$
 and $\min_{\pi\in\Pi(\mu,\nu)}\pi(f)=\pi_*(f)$.

Recall

$$\max_{\pi\in\Pi(\mu,\nu)}\pi(f)=\pi^*(f)$$
 and $\min_{\pi\in\Pi(\mu,\nu)}\pi(f)=\pi_*(f)$.

Theorem (Ghossoub-Saunders-Z., 2022)

For any set $N \subseteq \mathcal{X} \times \mathcal{Y}$,

$$\pi^*(N) = \min(\mu(N_{\mathcal{X}}), \nu(N_{\mathcal{Y}})),$$

Recall

$$\max_{\pi\in\Pi(\mu,\nu)}\pi(f)=\pi^*(f)$$
 and $\min_{\pi\in\Pi(\mu,\nu)}\pi(f)=\pi_*(f)$.

Theorem (Ghossoub-Saunders-Z., 2022)

For any set $N \subseteq \mathcal{X} \times \mathcal{Y}$,

$$\pi^*(N) = \min(\mu(N_{\mathcal{X}}), \nu(N_{\mathcal{Y}})),$$

$$\pi_*(N) = \max(\mu(\tilde{N}_{\mathcal{X}}), \nu(\tilde{N}_{\mathcal{Y}})).$$

Let γ be a normalized capacity on \mathcal{Z} . The core of γ is the set $\mathcal{C}(\gamma)$ of all probability measures v on $2^{\mathcal{Z}}$ such that $v(A) \geq \gamma(A)$ for all $A \in 2^{\mathcal{Z}}$.

Let γ be a normalized capacity on \mathcal{Z} . The core of γ is the set $\mathcal{C}(\gamma)$ of all probability measures v on $2^{\mathcal{Z}}$ such that $v(A) \geq \gamma(A)$ for all $A \in 2^{\mathcal{Z}}$.

Proposition

Let μ and ν be capacities on nonempty finite sets \mathcal{X} and \mathcal{Y} respectively. Then the following are equivalent.

- Both μ and ν have nonempty cores (i.e. $C(\mu) \neq \emptyset$ and $C(\nu) \neq \emptyset$).
- There exists $\pi \in \Pi(\mu, \nu)$ with nonempty core.

Let γ be a normalized capacity on \mathcal{Z} . The core of γ is the set $\mathcal{C}(\gamma)$ of all probability measures v on $2^{\mathcal{Z}}$ such that $v(A) \geq \gamma(A)$ for all $A \in 2^{\mathcal{Z}}$.

Proposition

Let μ and ν be capacities on nonempty finite sets \mathcal{X} and \mathcal{Y} respectively. Then the following are equivalent.

- Both μ and ν have nonempty cores (i.e. $C(\mu) \neq \emptyset$ and $C(\nu) \neq \emptyset$).
- There exists $\pi \in \Pi(\mu, \nu)$ with nonempty core.

Proposition

(a) If $\mathcal{C}(\pi^*) \neq \emptyset$, then $\mathcal{C}(\pi) \neq \emptyset$ for all $\pi \in \Pi(\mu, \nu)$.

Let γ be a normalized capacity on \mathcal{Z} . The core of γ is the set $\mathcal{C}(\gamma)$ of all probability measures v on $2^{\mathcal{Z}}$ such that $v(A) \geq \gamma(A)$ for all $A \in 2^{\mathcal{Z}}$.

Proposition

Let μ and ν be capacities on nonempty finite sets \mathcal{X} and \mathcal{Y} respectively. Then the following are equivalent.

- Both μ and ν have nonempty cores (i.e. $C(\mu) \neq \emptyset$ and $C(\nu) \neq \emptyset$).
- There exists $\pi \in \Pi(\mu, \nu)$ with nonempty core.

Proposition

(a) If
$$\mathcal{C}(\pi^*) \neq \emptyset$$
, then $\mathcal{C}(\pi) \neq \emptyset$ for all $\pi \in \Pi(\mu, \nu)$.

(b) If
$$\mathcal{C}(\pi_*) = \emptyset$$
, then $\mathcal{C}(\pi) = \emptyset$ for all $\pi \in \Pi(\mu, \nu)$.

Let γ be a normalized capacity on \mathcal{Z} . The core of γ is the set $\mathcal{C}(\gamma)$ of all probability measures v on $2^{\mathcal{Z}}$ such that $v(A) \geq \gamma(A)$ for all $A \in 2^{\mathcal{Z}}$.

Proposition

Let μ and ν be capacities on nonempty finite sets \mathcal{X} and \mathcal{Y} respectively. Then the following are equivalent.

- Both μ and ν have nonempty cores (i.e. $C(\mu) \neq \emptyset$ and $C(\nu) \neq \emptyset$).
- There exists $\pi \in \Pi(\mu, \nu)$ with nonempty core.

Proposition

(a) If
$$\mathcal{C}(\pi^*) \neq \emptyset$$
, then $\mathcal{C}(\pi) \neq \emptyset$ for all $\pi \in \Pi(\mu, \nu)$.

(b) If
$$C(\pi_*) = \emptyset$$
, then $C(\pi) = \emptyset$ for all $\pi \in \Pi(\mu, \nu)$.

(c) In particular, $C(\pi_*) \neq \emptyset$ iff $C(\mu) \neq \emptyset$ and $C(\nu) \neq \emptyset$.

Cores of the optimal solutions

However, $\mathcal{C}(\pi^*)$ is typically empty.

Proposition (Core of π^*)

Suppose that μ and ν are normalized capacities on \mathcal{X} and \mathcal{Y} , and $|\mathcal{X}| \ge 2$, $|\mathcal{Y}| \ge 2$. Then $\mathcal{C}(\pi^*) = \emptyset$.

Cores of the optimal solutions

However, $\mathcal{C}(\pi^*)$ is typically empty.

Proposition (Core of π^*)

Suppose that μ and ν are normalized capacities on \mathcal{X} and \mathcal{Y} , and $|\mathcal{X}| \ge 2$, $|\mathcal{Y}| \ge 2$. Then $\mathcal{C}(\pi^*) = \emptyset$.

Proposition (Core of π_*)

If u is a probability measure on \mathcal{X} and v is a probability measure on \mathcal{Y} , denote by $\Pi_a(u, v)$ the set of all probability measures on $\mathcal{X} \times \mathcal{Y}$ with marginal distributions u and v respectively. Let μ and ν be normalized capacities on \mathcal{X} and \mathcal{Y} respectively. Then:

$$\mathcal{C}(\pi_*) = \cup_{u \in \mathcal{C}(\mu), \mathbf{v} \in \mathcal{C}(\nu)} \prod_{a} (u, \mathbf{v}).$$
(14)

The Möbius transform

Definition

The Möbius transform of a capacity γ is defined as:

$$m^{\gamma}(A) = \sum_{B \subseteq A} (-1)^{|A \setminus B|} \gamma(B).$$
(15)

The Choquet integral of f with respect to γ can be represented as:

 $A \subset \mathcal{X}$

$$\gamma(f) = \sum_{B \subseteq \mathcal{X}} K_f(B) \gamma(B)$$
(16)
= $\sum m^{\gamma}(A) \min f(x)$ (17)

x∈A

$$\mathcal{K}_{f}(B) := \sum_{B \subseteq A} (-1)^{|A \setminus B|} \min_{x \in A} f(x).$$

Theorem (Duality I, Ghossoub-Saunders-Z., 2022)

The dual of the minimization Optimal Transport problem is equivalent to

$$\max_{\hat{\varphi},\hat{\psi},\hat{\rho}} \sum_{G \subseteq \mathcal{X}} \hat{\varphi}(G) \mu(G) + \sum_{F \subseteq \mathcal{Y}} \hat{\psi}(F) \nu(F)$$
(18)

subject to

$$\begin{aligned} \hat{\varphi}(G) &- \sum_{w \notin G \times \mathcal{Y}} \hat{\rho}(G \times \mathcal{Y}, w) + \sum_{w \in G \times \mathcal{Y}} \hat{\rho}((G \times \mathcal{Y}) \setminus \{w\}, w) = \mathcal{K}_{c}(G \times \mathcal{Y}), \quad \emptyset \neq G \subsetneq \mathcal{X}; \\ \hat{\psi}(F) &- \sum_{w \notin \mathcal{X} \times F} \hat{\rho}(\mathcal{X} \times F, w) + \sum_{w \in \mathcal{X} \times F} \hat{\rho}((\mathcal{X} \times F) \setminus \{w\}, w) = \mathcal{K}_{c}(\mathcal{X} \times F), \quad \emptyset \neq F \subsetneq \mathcal{Y}; \\ \hat{\varphi}(\mathcal{X}) + \hat{\psi}(\mathcal{Y}) + \sum_{w} \hat{\rho}((\mathcal{X} \times \mathcal{Y}) \setminus \{w\}, w) = \mathcal{K}_{c}(\mathcal{X} \times \mathcal{Y}); \\ &- \sum_{w \notin \mathcal{B}} \hat{\rho}(B, w) + \sum_{w \in \mathcal{B}} \hat{\rho}(B \setminus \{w\}, w) = \mathcal{K}_{c}(B), \quad B \notin \mathcal{P}^{*}_{\mathcal{X}, \mathcal{Y}}; \\ \hat{\rho} \ge 0. \end{aligned}$$
(19)

Theorem (Duality II, Ghossoub-Saunders-Z., 2022)

The dual of the minimization Optimal Transport problem is also equivalent to

$$\max_{L_{\varphi}, L_{\psi}, \hat{\rho}} \sum_{G \subseteq \mathcal{X}} L_{\varphi}(G) m^{\mu}(G) + \sum_{F \subseteq \mathcal{Y}} L_{\psi}(F) m^{\nu}(F)$$
(20)

$$L_{\varphi}(A_{\mathcal{X}}) + L_{\psi}(A_{\mathcal{Y}}) + \sum_{D \supseteq A} \sum_{w \in A} \hat{\rho}(D \setminus \{w\}, w) = \min_{(x, y) \in A} c(x, y), \quad \emptyset \neq A \subseteq \mathcal{X} \times \mathcal{Y};$$

$$\hat{\rho} \ge 0.$$
(21)

- Studied the *Transferable Utility Matching* and *Optimal Transport* problems with capacity marginals
- Provided characterizations of the optimal solutions and their cores
- Built the duality theory
- Results on infinite spaces is still open

Thank you!

- D. Gale and L. S. Shapley. College admissions and the stability of marriage. *The American Mathematical Monthly*, 69(1):9–15, 1962.
- Leonid V Kantorovich. On the translocation of masses. C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199–201, 1942.
- Leonid Vital'evich Kantorovich. On a problem of monge(in russian). *Uspekhi Math. Nauk.*, 3:225–226, 1948.
- Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. *Mem. Math. Phys. Acad. Royale Sci.*, pages 666–704, 1781.
- M Marinacci-L Montrucchio. Introduction to the mathematics of ambiguity. *Uncertainty in Economic Theory, I. Gilboa (ed.)*, pages 46–107, 2004.