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1. Introduction

An important problem in the literature on credit risk management is that of determining
bounds on the Credit Valuation Adjustment (CVA), that is, the price adjustment on a given
derivatives portfolio to account for potential counterparty credit risk losses (e.g., Garcia-
Cespedes, de Juan Herrero, Rosen, and Saunders (2010); Glasserman and Yang (2018);
Rosen and Saunders (2010, 2012)). A portfolio’s counterparty credit risk exposure depends
on market risk factors, and the likelihood of a counterparty default depends on credit risk
factors. Consequently, the computation of CVA requires the modelling of potential portfolio
losses as functions of these two sets of dependent risk factors. There is a large literature on
the required credit risk models (e.g., McNeil, Frey, and Embrechts (2015) and the references
therein). In practice, counterparty exposures often depend on a large number of risk factors
(equity prices, interest rates, exchange rates, etc.), leading to several challenges with their
measurement and management (e.g., Brigo, Morini, and Pallavicini (2013); Gregory (2020)).

Joint models of market and credit risk are, in general, very difficult to develop and estimate
in practice. Hence, even when the marginal distributions of the market and credit risk factors
are known, there is still uncertainty about their joint distribution and about the ensuing
CVA computation. Glasserman and Yang (2018) examine bounds on CVA arising from the
uncertainty about the dependence structure. They formulated the problem of finding the
worst-case CVA with respect to the dependence structure between the risk factors as an
Optimal Transport (OT) problem. In related work, Memartoluie, Saunders, and Wirjanto
(2017) considered in a formal way the problem of finding the worst-case Expected Shortfall
(ES) of a nonlinear function of market risk and credit risk, given the marginal distributions
of the factors, and they showed that in the case of finite sample spaces, the problem is
equivalent to a linear program. Recently, Ghossoub, Hall, and Saunders (2023) extended
the problem to general spaces and to spectral risk measures. They examined the problem
of finding a worst-case spectral risk measure of a nonlinear function of two risk factors with
known marginals, with respect to their dependence structure. They formulated the problem
as a generalized OT problem and provided a strong duality theory similar to the Kantorovich
duality in classical OT theory.

OT is the subject of a large literature, dating back to the seminal work of Monge (1781)
and Kantorovich (1942). Monge (1781) considered the problem of minimizing the total
cost (measured using the Euclidean distance between the source and the target) of moving
one mass distribution to another among all volume-preserving maps. Kantorovich (1942,
1948) later relaxed this problem by expanding the feasible set to all measure couplings
with given marginal distributions and developed a duality theory for the relaxed problem.
Modern OT is a large and rapidly developing field (e.g., Santambrogio (2015); Villani (2008))
with applications to several areas within mathematics (e.g., S. Rachev and Rüschendorf
(1998); Villani (2003)), and applied fields such as physics (e.g., Guillen and Kitagawa (2017);
R. McCann (2020)), statistics (e.g., Panaretos and Zemel (2022); Zhang, Peyré, Fadili, and
Pereyra (2020)), economics (e.g., Carlier and Zhang (2020); Galichon (2016); R. J. McCann
and Zhang (2019)), finance (e.g., Eckstein, Guo, Lim, and Obłój (2021); Henry-Labordère
(2017)), and machine learning (e.g., Peyré and Cuturi (2019); Torres, Pereira, and Amini
(2021)), for instance.
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In the aforementioned literature, the marginal distributions of risk factors are assumed to
be given and known, but their dependence structure is unknown. In particular, the marginals
are (additive) probability measures. As a result, problems of bounding risk measures of loss
functions can be formulated as (generalized) OT problems, with various cost functions, de-
pending on the particular application. In many such applications, particularly related to
the modelling of decision-making under ambiguity or vagueness in beliefs, a decision-maker’s
attitude toward, and sensitivity to ambiguity in beliefs is represented by monotone set func-
tions that lack additivity. Such objects are called capacities or nonadditive measures. See,
for example, the work of Quiggin (1982, 1993); Schmeidler (1986, 1989); Yaari (1987) for
theoretical foundations. In particular, the seminal contribution of Schmeidler (1986, 1989)
axiomatized models of decision-making under ambiguity in which the decision-maker’s pref-
erences admit a representation in terms of an expected utility with respect to a nonadditive
measure. Such expectations are defined through the notion of a Choquet integral with re-
spect to a capacity.1 We refer to Denneberg (1994) or Marinacci and Montrucchio (2004) for
more about capacities and Choquet integration.

In this paper, we are interested in the problem of bounding a risk measure of a nonlinear
function of two risk factors, but where (i) the marginal distributions of the risk factors are
ambiguous, and represented by nonadditive measures on the marginal spaces; and, (ii) the
objective function is a Choquet integral. As in Glasserman and Yang (2018), we consider the
case of two risk factors defined on finite spaces. We assume given (marginal) capacities on
these spaces, representing the ambiguous distributions of the risk factors, and consider the
problem of finding the joint capacity on the product space with these given marginals, which
maximizes or minimizes the Choquet integral of a given portfolio loss function. We treat
this problem as a generalization of the OT problem to the setting of nonadditive measures.
We provide explicit characterizations of the optimal solutions for finite marginal spaces,
and we investigate some of their properties. Additionally, we explore connections to linear
programming and present a version of the Kantorovich duality.

The remainder of the paper is organized as follows. Section 2 presents definitions and
background material needed for the rest of the paper. Section 3 formulates the problem of
bounding Choquet risk measures as an OT problem with nonadditive marginals. Section 4
presents a mathematical formulation of the OT problem for capacities, investigates properties
of its feasible set, and gives characterizations and explicit formulas for its solution. In
addition, we further study properties of the optimal capacities (in particular, non-emptiness
of the core) in terms of the corresponding properties of the marginal capacities. The explicit
formula for the core of the minimizer can be found in that section. Moreover, as in the case
of measures, the OT problem for capacities can be formulated as a linear program (see Torra
(2023) for a related result), and we characterize its dual in Section 5. Section 6 presents
numerical examples comparing our problem to the classical OT problem and illustrating its
use in a counterparty credit risk application. Finally, Section 7 concludes.

1Note that our use of the word capacity here is distinct from the usage in the literature on optimal transport
with capacity constraints (e.g., Korman and McCann (2015); Korman, McCann, and Seis (2015); Pennanen
and Perkkiö (2019)), where the “capacity constraint” imposes an upper bound on the density of the coupling.
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2. Preliminaries

2.1. Capacities and Choquet Integration. Denote by B pΣq the vector space of all
bounded and Σ-measurable real-valued functions on a given measurable space pS,Σq. Then
`

B pΣq , } ¨ }sup
˘

is a Banach space (Dunford & Schwartz, 1958, IV.5.1), where } ¨ }sup denotes
the supnorm.

Let ba pΣq denote the linear space of all bounded finitely additive set functions on pS,Σq.
When equipped with the variation norm } ¨}v, ba pΣq is a Banach space, and

`

ba pΣq , } ¨ }v
˘

is
isometrically isomorphic to the norm-dual of the Banach space

`

B pΣq , } ¨ }sup
˘

(e.g., (Dun-
ford & Schwartz, 1958, IV.5.1)) via the duality xϕ, λy “

ş

ϕ dλ, @λ P ba pΣq , @ϕ P B pΣq.
Denote by ca pΣq the collection of all countably additive elements of ba pΣq. Then ca pΣq is
a } ¨ }v-closed (and hence complete) linear subspace of ba pΣq. Henceforth, a collection of
probability measures will be called weak˚-compact if it is compact in the weak˚ topology
σ

`

ba pΣq , B pΣq
˘

.

Definition 2.1. A capacity (nonadditive measure) on a measurable space pS,Σq is a finite
set function γ : Σ Ñ

“

0, νpSq
‰

such that γ pHq “ 0 and γ is monotone; that is, for any
A,B P Σ, γ pAq ď γ pBq whenever A Ď B. When γpSq “ 1, the capacity γ is said to be
normalized.

The conjugate of a capacity γ on pS,Σq is the finite set function γ̄ : Σ Ñ
“

0, νpSq
‰

defined
by γ̄pAq :“ γ pSq ´ γpAcq, for all A P Σ. Then γ̄ is also a capacity, and if γ is normalized
then so is γ̄.

A capacity γ is called supermodular (resp. submodular) if

γ pAYBq ` γ pAXBq ě presp. ďq γ pAq ` γ pBq , @A,B P Σ.

The core of a capacity γ on pS,Σq, denoted by C pγq, is the collection of all bounded finitely
additive measures η on pS,Σq such that η pAq ě γ pAq, for all A P Σ. When nonempty,
core pγq is weak˚-compact and convex.

Definition 2.2. Let γ be a capacity on pS,Σq. The Choquet integral of Y P B pΣq with
respect to γ is defined by

ż

Y dγ :“

ż `8

0
γ

`

ts P S : Y psq ě tu
˘

dt`

ż 0

´8

”

γ
`

ts P S : Y psq ě tu
˘

´ 1
ı

dt,

where the integrals are taken in the sense of Riemann.

Definition 2.3. Two functions Y1, Y2 P B pΣq are said to be comonotonic if
”

Y1 psq ´ Y1
`

s1
˘

ı”

Y2 psq ´ Y2
`

s1
˘

ı

ě 0, for all s, s1 P S.

If γ P capΣq, then the Choquet integral with respect to γ is the usual Lebesgue integral
with respect to γ (e.g., (Marinacci & Montrucchio, 2004, p. 59)). Unlike the Lebesgue
integral, the Choquet integral is not an additive operator on B pΣq. However, the Choquet
integral is additive over comonotonic functions.

Proposition 2.4. Let γ be a capacity on pS,Σq.
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(1) If ϕ1, ϕ2 P B pΣq are comonotonic, then
ż

pϕ1 ` ϕ2q dγ “

ż

ϕ1 dγ `

ż

ϕ2 dγ.

(2) If ϕ1, ϕ2 P B pΣq are such that ϕ1 ď ϕ2, then
ż

ϕ1 dγ ď

ż

ϕ2 dγ.

(3) For all ϕ P B pΣq and all c ě 0, then
ż

cϕ dγ “ c

ż

ϕ dγ.

(4) If γ is submodular, then for any ϕ1, ϕ2 P B pΣq,
ż

pϕ1 ` ϕ2q dγ ď

ż

ϕ1 dγ`

ż

ϕ2 dγ.

(5) If γ is supermodular, then for any ϕ1, ϕ2 P B pΣq,
ż

pϕ1 ` ϕ2q dγ ě

ż

ϕ1 dγ `
ż

ϕ2 dγ.

2.2. Risk Measures. Risk measures are real-valued functionals defined on some collection
of random variables on a given probability space. They are often used either as a quantifi-
cation of riskiness of a given financial position, or as a way to determine adequate capital
requirements (e.g., Föllmer and Schied (2016), McNeil et al. (2015), or Rüschendorf (2013)).
Formally, a risk measure is a mapping ρ : X Ñ R, where X is a prespecified collection of
random variables on a given probablity space pS,Σ,Pq. Common properties of risk measures
include:

R.1 (Monotonicity) ρpXq ď ρpY q, for all X,Y P X such that X ď Y , P-a.s.

R.2 (Positive Homogeneity) ρpλXq “ λρpXq, for all X P X and all λ P R`.

R.3 (Cash Invariance) ρpX ` cq “ ρpXq ` c, for all X P X and c P R.

R.4 (Subadditivity) ρpX ` Y q ď ρpXq ` ρpY q for all X,Y P X .

R.5 (Comonotonic Additivity) ρpX`Y q “ ρpXq`ρpY q for all X,Y P X that are comono-
tonic.

R.6 (Law Invariance) ρpXq “ ρpY q when X and Y have the same distribution under P.

A coherent risk measure Artzner, Delbaen, Eber, and Heath (1999); Delbaen (2002) is
a risk measure that satisfies Axioms R.1-R.4, which are considered desirable for effective
risk management. A practically relevant example of a coherent risk measure, frequently
used in the banking and insurance industries, is the Expected Shortfall (ES), also known as
the Conditional Value-at-Risk (CVaR). If FÐ

X ptq is the left-continuous quantile of X, and
α P p0, 1q, then the expected shortfall of X at the confidence level α is:

ESαpXq “
1

1 ´ α

ż 1

α
FÐ
X ptq dt.

If the space pS,Σ,Pq is nonatomic, then a coherent, comonotonic additive, and law-invariant
risk measure admits a representation as a spectral risk measure (e.g., (Föllmer & Schied, 2016,
Theorem 4.93), Kusuoka (2001), (McNeil et al., 2015, Proposition 8.18), Shapiro (2013)),
that is, as a risk measure of the form

ρpXq “

ż 1

0
ESupXq dΓpuq,

for some probability measure Γ on r0, 1s. Moreover, by a classical result on Choquet inte-
gration (e.g., Schmeidler (1986)), monotone and comonotonic additive risk measures admit
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a representation in terms of a Choquet integral of the form

ρpXq “

ż

X dγ,

for some capacity γ on pS,Σq.

The class of spectral risk measures is flexible and rich enough to encompass several of the
most popular and practically relevant risk measures. Additionally, there is a tight relation-
ship between spectral risk measures and the subclass of Choquet risk measures called Distor-
tion Risk Measures (DRM). These are Choquet risk measures for which the capacity γ is of
the form T ˝P, for some increasing function T : r0, 1s Ñ r0, 1s such that T p0q “ 1´T p1q “ 0.
The function T is called a distortion function, or a probability weighting function. Indeed,
it can be shown (e.g., Acerbi (2002); Föllmer and Schied (2016); Kusuoka (2001); McNeil et
al. (2015); Shapiro (2013)) that a spectral risk measure also admits the representation

ρpXq “

ż 1

0
FÐ
X ptqκptq dt,

where κ : r0, 1q Ñ R` is a nonnegative and increasing function that satisfies
ż 1

0
κptq dt “

1. This function is called the spectral function. For instance, for the Expected Shortfall
(ES) at level α, the spectral function is given by p1 ´ αq

´1 1rα,1sptq, that is, ESα pXq “

p1 ´ αq
´1

ż 1

α
FÐ
X ptq dt. Moreover, letting

T pxq “ 1 ´

ż 1´x

0
κptq dt, @x P r0, 1s,

it follows that T is a distortion function, and it can be shown that ρ is DRM with respect
to T ˝ P, that is,

ρpXq “

ż

X dT ˝ P.

2.3. Finite State Spaces. Suppose that Z is a nonempty finite set, and let Σ “ 2Z be the
collection of all of its subsets. Throughout, we identify measures on any nonempty finite set
Z with vectors v P R|Z| through vpAq “

ř

iPA vi. Let γ be a capacity on pZ,Σq.

Definition 2.5. The Möbius transform of a capacity γ is defined as

mγpAq :“
ÿ

BĎA

p´1q|AzB|γpBq.

The Choquet integral of a function f with respect to the capacity γ can be represented in
terms of the Möbius transform as follows:

γpfq “
ÿ

AĎX
mγpAq

ľ

xPA

fx “
ÿ

AĎX

ÿ

BĎA

p´1q|AzB|γpBq
ľ

xPA

fx

“
ÿ

BĎX
γpBq

¨

˝

ÿ

AĚB

p´1q|AzB|
ľ

xPA

fx

˛

‚“
ÿ

BĎX
Kf pBqγpBq,

(2.1)
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with

(2.2) Kf pBq :“
ÿ

AĚB

p´1q|AzB|
ľ

xPA

fx,

where fx “ fpxq, and
Ź

xPA fx represents the minimum of f on A (e.g., (Grabisch, 2016,
Theorem 4.95)). See Grabisch (2016) and Marinacci and Montrucchio (2004) for more in-
formation about the Möbius transform.

Definition 2.6. Let Z be a nonempty finite set, and let G Ď 2Z be a collection of subsets
containing Z and the empty set. Suppose that a function G : G Ñ R` satisfies GpHq “ 0,
and GpAq ď GpBq whenever A,B P G, A Ď B. The capacity on Z defined by

G˚pBq :“ inf
APG
AĚB

GpAq, for all B P 2Z ,

is called the outer envelope of G. The capacity defined by

G˚pBq :“ sup
APG
AĎB

GpAq, for all B P 2Z ,

is called the inner envelope of G.

When it is necessary to make G explicit in the notation, we will write G˚pBq “ G˚pB;Gq

for the outer envelope, and G˚pBq “ G˚pB;Gq for the inner envelope. It is easy to see that
G˚ ď G˚.2

Definition 2.7. Given nonempty finite sets X ,Y, we define PX ,Y to be the collection of all
subsets of X ˆ Y of the form A ˆ B with A Ď X and B Ď Y. We define P˚

X ,Y to be the
collection of all subsets of X ˆ Y of the form A ˆ B with A Ď X and B Ď Y, and either
A “ X or B “ Y (or both). That is P˚

X ,Y is the collection of all sets either of the form X ˆB

with B Ď Y or Aˆ Y with A Ď X .

Sets in product spaces and their projections will feature prominently in the optimal solu-
tions of our optimization problems. The notation in the next definition will be convenient.

Definition 2.8. For a set M Ď X ˆ Y, define:

MX :“ tx P X : Dz “ px, yq P Mu, MY :“ ty P Y : Dz “ px, yq P Mu,

ĂMX :“ tx P X : px, yq P M, @y P Yu, ĂMY :“ ty P Y : px, yq P M, @x P X u.

It is easy to see that ĂMX “ ppM cqX qc, and ĂMY “ ppM cqYqc.

Definition 2.9. Let k ě 2 be an integer. A capacity γ on Z is called k-monotone if for any
sets A1, . . . , Ak P Z,

γ

¨

˝

k
ď

j“1

Aj

˛

‚ě
ÿ

JĎt1,...,ku
J‰H

p´1q|J |`1γ

¨

˝

č

jPJ

Aj

˛

‚.

2Fix M Ď Z, and A,B P G with A Ď M Ď B. Then GpAq ď GpBq. Minimizing over B containing M yields
GpAq ď G˚pMq, and then maximizing over A contained in M gives that G˚pMq ď G˚pMq.
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The capacity is called k-alternating if the above inequality is reversed. A 2-monotone
capacity is supermodular, while a 2-alternating capacity is submodular. If γ is k-monotone
for all k ě 2, it is called totally monotone, and if it is k-alternating for all k ě 2, it is called
totally alternating.

3. Bounds on Choquet Risk Measures

3.1. Problem Formulation. We consider the case of a portfolio whose loss depends on two
risk factors defined on two finite spaces. We assume given (marginal) capacities on these
spaces, representing the ambiguous distributions of the risk factors, and we consider the
problem of finding the joint capacity on the product space with these given marginals that
maximizes or minimizes the Choquet integral of a given portfolio loss function.

Specifically, let X and Y be non-empty finite sets, and let X and Y be random variables
on X and Y, respectively. We are given a function L : XpX q ˆ Y pYq Ñ R representing the
loss on a portfolio consisting of the risk factors X and Y . The distributional uncertainty,
or ambiguity, about the risk factors is represented by capacities µ on X and ν on Y, to be
interpreted as ambiguous beliefs about the distributions of X and Y , respectively.

A joint distribution for X and Y is represented by a capacity on the product space X ˆY,
such that the projections onto X and Y are µ and ν, respectively.

Definition 3.1. Let X and Y be nonempty finite sets, µ a capacity on X , ν a capacity on
Y, and π a capacity on X ˆ Y.

(1) The marginal capacities of π on X and Y, respectively, are defined by

πX pAq :“ πpAˆ Yq and πYpBq :“ πpX ˆBq, for all A Ď X and B Ď Y.

(2) The set of all capacities π on X ˆ Y such that πX “ µ and πY “ ν is denoted by
ΠChpµ, νq.

We are interested in evaluating a risk measure ρ
`

LpX,Y q
˘

of the portfolio loss function
in the case where ρ is a Choquet integral of L pX,Y q with respect to a capacity π on X ˆY:

ρπ
`

LpX,Y q
˘

“

ż

XˆY
LpX,Y q dπ.

In our framework, while the capacities µ and ν are given, no information about the de-
pendence structure (and hence the joint distribution) of the two risk factors is available.
Therefore, computing a Choquet risk measure of the portfolio loss function is not possible
without further information. A natural question that arises is whether we are able to es-
tablish upper and lower bounds on the value of such a risk measures with respect to the
uncertrainty about the joint capacity π P ΠChpµ, νq. Specifically, our problem is that of
finding capacities that maximize or minimize the Choquet integral of LpX,Y q among all
capacities in ΠChpµ, νq:

(3.1) LpL; ΠChpµ, νqq :“ inf
πPΠChpµ,νq

ρπ
`

LpX,Y q
˘

ď sup
πPΠChpµ,νq

ρπ
`

LpX,Y q
˘

“: UpL; ΠChpµ, νqq.
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Problem (3.1) can be seen as a generalization of the optimal transport problem to the
setting of nonadditive measures.

4. The Optimal Transport Problem for Capacities

In this section, we formulate the optimal transport problem for capacities.3 Once the
problem is formulated, we investigate properties of the feasible set. Understanding the
lattice structure of the feasible set leads immediately to explicit formulas for the optimizers.

Definition 4.1. Let X and Y be non-empty finite sets, and let u and v be probability
measures on X and Y, respectively. Denote by Πapu, vq the set of measures on X ˆ Y that
have the marginals u on X and v on Y. That is,

Πapu, vq :“
!

π | π is a measure on X ˆ Y such that πpAˆ Yq “ upAq, for any A Ď X ,

and πpX ˆBq “ vpBq, for any B Ď Y.
)

Given a function f , the optimal transport minimization problem is:

inf
πPΠapu,vq

πpfq “ inf
πPΠapu,vq

ÿ

xPX ,yPY
fpx, yqπptpx, yquq.(4.1)

Similarly, given a function g, the optimal transport maximization problem is:

sup
πPΠapu,vq

πpgq.(4.2)

Both the maximization and minimization problems are linear in π. Because Πapu, vq is
convex and compact, optimal solutions exist, and the set of optimal solutions contains at
least one extreme point of the feasible set. For instance, when |X | “ |Y| and both u and v

are uniform measures, by Birkhoff’s Theorem there exists an optimal solution supported on
Ť|X |

i“1tpxi, yσpiqqu, for some permutation σ.

Definition 4.2. Let X and Y be nonempty finite sets and π be a capacity on X ˆ Y. The
marginal capacities of π on X and Y, respectively, are defined by

πX pAq :“ πpAˆ Yq and πYpBq :“ πpX ˆBq,

for all A Ď X , B Ď Y.

In particular, for two probability measures u and v, Πapu, vq Ď ΠChpu, vq, where the latter
is defined in Definition 3.1. The proof of the following result is straightforward.

Lemma 4.3. Let µ and ν be normalized capacities on X and Y, respectively. Then π P

ΠChpµ, νq if and only if π̄ P ΠChpµ̄, ν̄q.

Given a function f : X ˆ Y Ñ R, consider the analogue of the optimal transport problem
on capacity couplings, i.e. finding capacities to maximize or minimize the Choquet integral
3 The transshipment problem is an optimization problem closely related to the optimal transport problem, see
S. T. Rachev and Rüschendorf (1998), Chen, Hu, and Jiang (2022), and the references therein. A formulation
of the transshipment problem for capacities is contained in an appendix that is available from the authors
upon request.
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of f among all capacities in ΠChpµ, νq:

Lpf ; ΠChpµ, νqq :“ inf
πPΠChpµ,νq

πpfq ď sup
πPΠChpµ,νq

πpfq “: Upf ; ΠChpµ, νqq.

We note that, since πp´fq ‰ ´πpfq in general, it is worthwhile to develop the theories for
the minimum and maximum problems in parallel.

4.1. The Feasible Set and Its Properties. The first thing to observe about the feasible
set is that it is nonempty.

Proposition 4.4. Let µ and ν be normalized capacities on X and Y respectively. Then
ΠChpµ, νq ‰ H.

Proof. Define the function G : PX ,Y Ñ R` by GpA ˆ Bq :“ µpAq ¨ νpBq for A ˆ B P PX ,Y

with A Ď X and B Ď Y. It is easy to verify that both G˚ and G˚ are in ΠChpµ, νq. ˝

We note that we could have used P˚
X ,Y in place of PX ,Y in the above argument, and reached

the same conclusion. Since ΠChpµ, νq is defined by a finite system of linear equalities and
inequalities, and 0 ď πpBq ď 1 for any set B, we in fact have the following result.

Proposition 4.5. Let µ and ν be normalized capacities on X and Y. Then ΠChpµ, νq is a
compact, convex polyhedron in R2|X |¨|Y|.

Remark 4.6.
‚ A capacity γ is called the unanimity game associated with the set F if γpGq “ 1 if
G Ě F , and γpGq “ 0 otherwise. If µ is the unanimity game associated with A Ď X ,
and ν is the unanimity game associated with B Ď Y, then the unanimity game π
associated with AˆB Ď X ˆ Y is in ΠChpµ, νq.

‚ Suppose that µ is a totally monotone capacity on X with Möbius transform mµ, and
ν is a totally monotone capacity on Y with Möbius transform mν , then π defined to
be the capacity on X ˆ Y with Möbius transform given by

mπpF q “

$

&

%

mµpAq ¨mνpBq, F “ AˆB,A Ď X , B Ď Y;

0, otherwise,

is a totally monotone capacity in ΠChpµ, νq.4 For further information on this con-
struction, see Bauer (2012); Destercke (2013); Ghirardato (1997); Hendon, Jacobsen,
Sloth, and Tran (1991); Koshevoy (1998); Walley and Fine (1982). Combining the
above argument with Lemma 4.3, it is easy to see that if µ and ν are totally alter-
nating, then there exists a totally alternating capacity π P ΠChpµ, νq.

‚ A possibility measure γ is defined as a normalized capacity such that γpA Y Bq “

maxpγpAq, γpBqq, for any sets A and B. From this definition, it is easy to see that
γpAq “ maxzPA γptzuq (and by normalization, there must exist z such that γptzuq “

4It should be noted that if µ and ν are capacities, this construction does not in general result in a capacity.
A counterexample is given by X “ Y “ t0, 1u, µ “ ν, with µpHq “ 0, µpt0uq “ µpt1uq “ 0.7, µpX q “ 1 (see
Dyckerhoff (2022)).
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1). If µ and ν are possibility measures, then πpAq :“ maxpx,yqPA µptxuq¨νptyuq defines
a possibility measure in ΠChpµ, νq. The conjugate of a possibility measure is called
a necessity measure (which satisfies γpA X Bq “ minpγpAq, γpBqq). Again, using
Lemma 4.3 one can show that if µ and ν are necessity measures, then there exists a
necessity measure π P ΠChpµ, νq.

A capacity is said to be balanced if its core is nonempty. The next result demonstrates
that there exists a balanced π P ΠChpµ, νq if and only if both µ and ν are balanced.

Proposition 4.7. Let µ and ν be normalized capacities on nonempty finite sets X and Y,
respectively. Then the following are equivalent:

(1) Both µ and ν have nonempty cores (i.e., Cpµq ‰ H and Cpνq ‰ H).

(2) There exists π P ΠChpµ, νq with a nonempty core.

Proof. Suppose that u P Cpµq and v P Cpνq. Define a measure w on X ˆ Y by wptpx, yquq :“

uptxuqvptyuq and additivity. Further, define G : PX ,Y Ñ R` by GpAˆBq :“ µpAq ¨ νpBq for
A Ď X and B Ď Y, and take π “ G˚ P ΠChpµ, νq. It is easy to see that πpX ˆYq “ wpX ˆYq.
Let M Ď X ˆ Y, and consider K “ AˆB P PX ,Y , K Ď M . Then:

GpKq “ µpAq νpBq ď
ÿ

xPA

ÿ

yPB

uptxuqvptyuq “
ÿ

z“px,yqPK

wptpx, yquq

ď
ÿ

z“px,yqPM

wptpx, yquq “ wpMq.

This implies that πpMq “ G˚pMq ď wpMq, for all M Ď X ˆ Y. Therefore, w P Cpπq.

Conversely, let π P ΠChpµ, νq and w P Cpπq, and define for y P Y, vptyuq :“
ř

xPX wptx, yuq.
With B Ď Y, we have

vpBq “
ÿ

yPB

vptyuq “
ÿ

xPX ,yPB

wptx, yuq “ wpX ˆBq ě πpX ˆBq “ νpBq,

with equality when B “ Y, and therefore v P Cpνq ‰ H. The same argument yields
Cpµq ‰ H. ˝

Remark 4.8. It should be noted that there can exist capacities µ on X and ν on Y with
nonempty cores and an element π P ΠChpµ, νq with an empty core. Consider X “ tx1, x2u,
Y “ ty1, y2u, and take µ and ν to be probability measures on X and Y respectively, giving
equal weight to each point. Define π P ΠChpµ, νq to give value zero to the empty set, 1 to
X ˆY, 1

4 to any subset consisting of a single point, 1
2 to any subset consisting of two points,

and 7
8 to any subset consisting of three points. Any element w P Cpπq would have to satisfy

wptpx1, y1quq ě 1
4 , and wpX ˆ Yztpx1, y1quq ě 7

8 , and thus wpX ˆ Yq ě 9
8 ą 1, contradicting

wpX ˆ Yq “ πpX ˆ Yq “ 1.

4.2. Lattice Structure of the Feasible Set and Characterization of the Optimal
Solutions. If we think of normalized capacities on Z as functions on the collection of subsets
2Z , then given two capacities γ and π, we can define, for A Ď Z:

pπ ^ γqpAq :“ minpπpAq, γpAqq, pπ _ γqpAq :“ maxpπpAq, γpAqq.
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With these definitions, π^ γ and π_ γ are both capacities, and the collection of all normal-
ized capacities is a bounded distributive lattice, with largest element giving value 1 to all
nonempty sets, and smallest element giving value 0 to all sets except Z, which has value 1.5

Since all capacities in ΠChpµ, νq have the same values for sets of the form AˆY, for A Ď X ,
and X ˆ B, for B Ď Y, we have that ΠChpµ, νq is a distributive sublattice. Furthermore,
ΠChpµ, νq is bounded (as a lattice) with maximum and minimum elements given by taking
setwise maxima and minima:

π˚pAq “ sup
πPΠChpµ,νq

πpAq and π˚pAq “ inf
πPΠChpµ,νq

πpAq.

The next result follows from the definition of the Choquet integral.

Theorem 4.9. For f : X ˆ Y Ñ R, and π˚ and π˚ described above, we have

min
πPΠChpµ,νq

πpfq “ π˚pfq and max
πPΠChpµ,νq

πpfq “ π˚pfq.

Proof. We first verify that both π˚ and π˚ are indeed feasible. Note that if N “ A ˆ Y for
A Ď X , then πpNq “ µpAq for all π P ΠChpµ, νq, and therefore π˚pNq “ π˚pNq “ µpAq.
Similarly, if N “ X ˆ B with B Ď Y, then π˚pNq “ π˚pNq “ νpBq. Furthermore, by their
definitions, both π˚ and π˚ are non-negative non-decreasing set functions, i.e. capacities. In
other words, we have that π˚, π˚ P ΠChpµ, νq.

Now, by the definition in (4.2), π˚ and π˚ achieve the set-wise infimum and supremum
among ΠChpµ, νq, respectively. Let π P ΠChpµ, νq. Then:

πpfq “

ż 8

0
πptf ě tuq dt`

ż 0

´8

pπptf ě tuq ´ πpZqq dt

“

ż 8

0
πptf ě tuq dt`

ż 0

´8

pπptf ě tuq ´ 1q dt

ě

ż 8

0
π˚ptf ě tuq dt`

ż 0

´8

pπ˚ptf ě tuq ´ 1q dt “ π˚pfq.

The proof for π˚ is similar. ˝

It is possible to find explicit expressions for π˚ and π˚.

Theorem 4.10. For any N Ď X ˆ Y,

π˚pNq “ max
´

µp rNX q, νp rNYq

¯

and π˚pNq “ min
`

µpNX q, νpNYq
˘

.

Proof. Define G : P˚
X ,Y Ñ R by

GpMq :“

$

&

%

µpAq, if M “ Aˆ Y;

νpBq, if M “ X ˆB.

Let G˚ and G˚ be the outer and inner envelope of G as defined in Definition 2.6 with
G “ P˚

X ,Y . From the monotonicity of µ on 2X (with the inclusion order), it is not hard to

5We note that there is another way of defining lattice operations on capacities, involving setwise maxima and
minima of their Möbius transforms. See Grabisch (2016); Marinacci and Montrucchio (2004) for details.
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see that, for any N P P˚
X ,Y with N “ A ˆ Y, one has G˚pNq “ G˚pNq “ µpAq. Similarly,

for any N “ X ˆ B with B Ď Y, we have G˚pNq “ G˚pNq “ νpBq. By definition, G˚ and
G˚ are clearly non-negative and non-decreasing, so G˚, G˚ P ΠChpµ, νq.

For any N Ď X ˆ Y, rNX ˆ Y Ď N Ď NX ˆ Y and X ˆ rNY Ď N Ď X ˆ NY . Therefore,
G˚pNq ď minpµpNX q, νpNYqq and G˚pNq ě maxpµp rNX q, νp rNYqq. If N Ď A ˆ Y, then
NX Ď A, and if A1 ˆ Y Ď N , then A1 Ď rNX . The monotonicity of µ and ν then imply that

G˚pNq “ minpµpNX q, νpNYqq,

G˚pNq “ maxpµp rNX q, νp rNYqq.

To complete the proof, we will show that π˚ “ G˚ and π˚ “ G˚. For any π P ΠChpµ, νq

and N Ď X ˆ Y, the relation rNX ˆ Y Ď N Ď NX ˆ Y implies that

µp rNX q “ πp rNX ˆ Yq ď πpNq ď πpNX ˆ Yq “ µpNX q,

and X ˆ rNY Ď N Ď X ˆNY implies that

νp rNYq “ πpX ˆ rNYq ď πpNq ď πpX ˆNYq “ νpNYq.

Therefore,

G˚pNq “ maxpµp rNX q, νp rNYqq ď πpNq ď minpµpNX q, νpNYqq “ G˚pNq.

This implies, G˚ ď π˚ and π˚ ď G˚. The equalities hold because G˚, G
˚ P ΠChpµ, νq. ˝

Remark 4.11. If we explicitly include the dependence of the optimizers on the marginal
capacities, i.e. when given µ, ν write π˚p¨;µ, νq and π˚p¨;µ, νq for the smallest and largest
elements of ΠChpµ, νq, then it is easy to show that π̄˚p¨;µ, νq “ π˚p¨; µ̄, ν̄q and π̄˚p¨;µ, νq “

π˚p¨; µ̄, ν̄q.

Remark 4.12.
‚ Suppose that µ is the unanimity game associated with A Ď X and ν is the unanimity

game associated with B Ď Y, and N Ď X ˆY. Then π˚pNq “ 1 if either AˆY Ď N

or X ˆ B Ď N , and zero otherwise. On the other hand, π˚pNq “ 1 if for all x0 P A

there exists ypx0q P Y such that px0, ypx0qq P N and for all y0 P B there exists
xpy0q P X such that pxpy0q, y0q P N , and π˚pNq “ 0 otherwise.

‚ Suppose that µ and ν are possibility measures, and define M : X ˆ Y Ñ r0, 1s by
Mpx, yq :“ maxpµptxuq, νptyuq. Then given N Ď X ˆ Y,

π˚pNq “ maxpmax
xP rNX

µptxuq,max
yP rNY

νptyuqq “ max
px,yqP rNX ˆ rNY

Mpx, yq.

Define m : X ˆ Y Ñ r0, 1s by mpx, yq :“ minpµptxuq, νptyuqq, then

π˚pNq “ minpmax
xPNX

µptxuq,max
yPNY

νptyuqq “ max
px,yqPNX ˆNY

mpx, yq.

When µ and ν are necessity measures, then π˚ and π˚ can be calculated using the
previous remark.
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Consider f : X ˆ Y Ñ R. For a fixed x P X , define

fypxq :“ mintfpx, yq : y P Yu and fypxq :“ maxtfpx, yq : y P Yu,

with fx, f
x : Y Ñ R defined similarly. Then

Čtf ě tuX “ tx P X : px, yq P tf ě tu @y P Yu

“ tx P X : min
yPY

fpx, yq ě tu “ tfy ě tu.

Similarly Čtf ě tuY “ tfx ě tu, and therefore

π˚ptf ě tuq “ maxpµptfy ě tuq, νptfx ě tuqq,

and

π˚pfq “

ż 8

0
maxpµptfy ě tuq, νptfx ě tuqq dt`

ż 0

´8

pmaxpµptfy ě tuq, νptfx ě tuqq ´ 1q dt,

using the fact that we have assumed µ and ν to be normalized.

Using a similar argument,

tf ě tuX “ tx P X : Dy P Y, fpx, yq ě tu

“ tx P X : max
yPY

fpx, yq ě tu “ tfy ě tu,

and tf ě tuY “ tfx ě tu. Thus,

π˚ptf ě tuq “ minpµptfy ě tuq, νptfx ě tuqq,

and

π˚pfq “

ż 8

0
minpµptfy ě tuq, νptfx ě tuqq dt`

ż 0

´8

pminpµptfy ě tuq, νptfx ě tuqq ´ 1q dt.

To conclude, we have

Lpf ; ΠChpµ, νqq

“ min
πPΠChpµ,νq

πpfq “ π˚pfq

“

ż 8

0
maxpµptfy ě tuq, νptfx ě tuqq dt`

ż 0

´8

pmaxpµptfy ě tuq, νptfx ě tuqq ´ 1q dt

ď

ż 8

0
minpµptfy ě tuq, νptfx ě tuqq dt`

ż 0

´8

pminpµptfy ě tuq, νptfx ě tuqq ´ 1q dt

“ π˚pfq “ max
πPΠChpµ,νq

πpfq

“ Upf ; Πpµ, νqq.

4.3. Balancedness and Cores of the Optimal Solutions. Since π˚pNq ď πpNq ď

π˚pNq, for all N Ď X ˆ Y and π P ΠChpµ, νq, we immediately obtain the following result.
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Proposition 4.13. Let µ and ν be normalized capacities on X and Y, respectively. The
following statements regarding the cores hold.

(1) If Cpπ˚q ‰ H, then Cpπq ‰ H for all π P ΠChpµ, νq.

(2) If Cpπ˚q “ H, then Cpπq “ H for all π P ΠChpµ, νq.

(3) In particular, Cpπ˚q ‰ H iff Cpµq ‰ H and Cpνq ‰ H.

Proof. Suppose p P Cpπ˚q, then for any fixed π P Πpµ, νq and any N Ď X ˆ Y, one has
ppNq ě π˚pNq ě πpNq, with both equalities hold at N “ X ˆY. Therefore, p P Cpπq. Using
the same argument, one can show (2). Proposition 4.7 together with (2) implies (3). ˝

However, Cpπ˚q is typically empty, as per the following result.

Proposition 4.14. Suppose that µ and ν are normalized capacities on X and Y, respectively,
and |X | ě 2, |Y| ě 2. Then Cpπ˚q “ H.

Proof. Let tA1, A2u and tB1, B2u be partitions of X and Y respectively, and define:

N1 “ pA1 ˆB1q Y pA2 ˆB2q and N2 “ pA1 ˆB2q Y pA2 ˆB1q.

Then N1
X “ N2

X “ X , N1
Y “ N2

Y “ Y, so that for the disjoint sets N1 and N2, π˚pN1q “

π˚pN2q “ 1. ˝

We can in fact explicitly identify Cpπ˚q in terms of Cpµq and Cpνq.

Proposition 4.15. Let µ and ν be normalized capacities on X and Y, respectively. Then

Cpπ˚q “
ď

uPCpµq,vPCpνq

Πapu, vq.

Proof. Let w P Cpπ˚q, and for each fixed x0 P X , y0 P Y define uwptx0uq :“
ř

yPY wptx0, yuq,
and vwpty0uq :“

ř

xPX wptx, y0uq. Clearly w P Πapuw, vwq. Furthermore, for A Ď X , we have

uwpAq “ wpAˆ Yq ě π˚pAˆ Yq “ µpAq,

since π˚ P ΠChpµ, νq. Thus, uw P Cpµq, and similarly vw P Cpνq.

Conversely, suppose that w P Πapu, vq with u P Cpµq and v P Cpνq. Clearly, wpX ˆ Yq “

upX q “ µpX q “ 1. Let N Ď X ˆ Y, and note that rNX ˆ Y Ď N and X ˆ rNY Ď N . Then

π˚pNq “ maxpµp rNX q, νp rNYqq ď maxpup rNX q, vp rNYqq “ maxpwp rNX ˆ Yq, wpX ˆ rNYqq ď wpNq.

That is, w P Cpπ˚q. ˝

Remark 4.16. By (Grabisch, 2016, Corollary 2.23 (ii)), γ is supermodular if and only if for
every A Ď B Ď X ˆ Y and z R B, ∆zγpAq ď ∆zγpBq, where ∆zγpAq :“ γpAY tzuq ´ γpAq,
and ∆zγpBq is defined similarly. It is well-known that if γ is supermodular, then Cpγq ‰ H

(e.g., (Grabisch, 2016, Theorem 3.15)).

Let X “ tx1, x2, x3u, and Y “ ty1, y2, y3u, and let µ be the additive (and therefore
supermodular) capacity with µptx1uq “ µptx2uq “ 0.1, and µptx3uq “ 0.8, with ν defined on



16 MARIO GHOSSOUB, DAVID SAUNDERS, AND KELVIN SHUANGJIAN ZHANG

Y in the same way. Define:

A :“ tpx1, y2q, px1, y3qu and B :“ tpx1, y2q, px1, y3q, px2, y3q, px3, y3qu,

and z :“ px1, y1q. Note that rAX “ H, rAY “ H, so π˚pAq “ 0. Also, ČpAY zqX “ tx1u,
ČpAY zqY “ H, so ∆zπ˚pAq “ π˚pAYzq “ µptx1uq “ 0.1. Furthermore, rBX “ H, rBY “ ty3u,
ČpB Y zqX “ tx1u, and ČpB Y zqY “ ty3u, so π˚pBq “ π˚pB Y zq “ νpty3uq “ 0.8, and
∆zπ˚pBq “ 0. Thus, we conclude that while π˚ has a nonempty core, it is not supermodular.

Definition 4.17. A capacity γ on Z is said to be exact if for every S P 2ZzH, there exists
a core element p P Cpγq such that ppSq “ γpSq.

We have seen that Cpπ˚q is typically empty, so that π˚ will not be exact. In the case
when µ and ν are exact, we may ask whether π˚ is exact. That is, we define the capacity
rπ P ΠChpµ, νq by:

rπpNq :“ min

$

&

%

ppNq : p P
ď

uPCpµq,vPCpνq

Πapu, vq

,

.

-

, for any N Ď X ˆ Y,

and we ask whether π˚ “ rπ.

Remark 4.18. In general rπ as defined above need not be either submodular or supermodu-
lar. To see this, consider the case X “ Y “ t1, 2, . . . , nu for some n ě 3, with µ and ν being
uniform probability measures, and let π1 be the conjugate of rπ.6 Then

π1pAq “ 1 ´ rπpAcq “ 1 ´ min
pPΠapµ,νq

ppAcq “ max
pPΠapµ,νq

ppAq.

By Birkhoff’s Theorem, the optimum rπpAq (and similarly π1pAq) is achieved by measures
that put mass 1

n on points txi, yσpiqu for some permutation σ. Consider A1 “ tp1, 1qu,
z “ pn, nq and B1 “ X ˆ Yztzu. Then it is easy to see that ∆zπ

1pA1q “ 2
n ´ 1

n “ 1
n ,

while ∆zπ
1pB1q “ 1 ´ 1 “ 0. Thus ∆zπ

1pA1q ą ∆zπ
1pB1q, and A1 Ď B1, so π1 is not

supermodular (and therefore rπ is not submodular, see (Grabisch, 2016, Theorem 2.20)).
On the other hand, consider A2 “ tp1, 1qu, B2 “ tp1, 1q, p2, 1qu and z “ p1, 2q. Then
∆zπ

1pA2q “ 0, and ∆zπ
1pB2q “ 1

n . We therefore have that pB2 Y tzuqc Ď pA2 Y tzuqc,
and ∆zrπppB2 Y tzuqcq “ ∆zπ

1pB2q ą ∆zπ
1pA2q “ ∆zrπppA2 Y tzuqcq (e.g., (Grabisch, 2016,

Theorem 2.16)). Thus rπ is not supermodular (and π1 is not submodular).

Remark 4.19. Let n ě 2, X “ t1, . . . , nu and Y “ X , and take µ and ν to be two
probability measures on X that are not equal. Then Cpµq “ tµu, and Cpνq “ tνu, so that
Cpπ˚q “ Πapµ, νq. Notice that any element of Πapµ, νq is also in ΠChpµ, νq. Πapµ, νq is
compact, and for any fixed B, ppBq “

ř

tx,yuPB pptx, yuq is a continuous function on Πapµ, νq

and therefore its minimum is attained. Consider the set D “ tp1, 1q, p2, 2q, . . . , pn, nqu and
M “ Dc. We have that ĂMX “ ĂMY “ H, and therefore π˚pMq “ 0. Suppose that π˚ was
exact. Then there is a π P Πapµ, νq such that πpMq “ 0. But then π is concentrated on the
diagonal D, contradicting the fact that µ ‰ ν. This implies that π˚ is not exact.

6We prefer to avoid the cumbersome notation r̄π.
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5. Linear Programming and the Kantorovich Duality for Capacities

In this section, we formulate the optimal transport problem for capacities as a linear
program, and we present its dual. Recall that the Choquet integral of f with respect to a
capacity γ on Z can be written as

ż

f dγ “
ÿ

BĎZ
Kf pBqγpBq,

where
Kf pBq “

ÿ

AĚB

p´1q|AzB|
ľ

xPA

fx.

While this expression is not linear in f , it is linear in γ, and since the constraints defining
ΠChpµ, νq are all linear (see Proposition 4.5), the problem of minimizing πpcq over all π P

ΠChpµ, νq becomes a linear program:

min
π

ÿ

BĎXˆY
KcpBqπpBq, subject to(5.1)

πpGˆ Yq “ µpGq, H ‰ G Ď X ;

πpX ˆ F q “ νpF q, H ‰ F Ď Y;

πpAY wq ě πpAq, A Ă X ˆ Y, w “ tpx, yqu R A;

πpHq “ 0,

(5.2)

(e.g., (Grabisch, 2016, pp. 81-82)). Recall that a subset B of X ˆY is in P˚
X ,Y if B “ GˆY

for some G Ď X or B “ X ˆ F for some F Ď Y.

The dual of the above linear program is given by

max
φ̂,ψ̂,ρ̂

ÿ

GĎX
φ̂pGqµpGq `

ÿ

FĎY
ψ̂pF qνpF q, subject to(5.3)

φ̂pGq ´
ÿ

wRGˆY
ρ̂pGˆ Y, wq `

ÿ

wPGˆY
ρ̂ppGˆ Yqztwu, wq “ KcpGˆ Yq, H ‰ G Ř X ;

ψ̂pF q ´
ÿ

wRXˆF

ρ̂pX ˆ F,wq `
ÿ

wPXˆF

ρ̂ppX ˆ F qztwu, wq “ KcpX ˆ F q, H ‰ F Ř Y;

φ̂pX q ` ψ̂pYq `
ÿ

w

ρ̂ppX ˆ Yqztwu, wq “ KcpX ˆ Yq;

´
ÿ

wRB

ρ̂pB,wq `
ÿ

wPB

ρ̂pBztwu, wq “ KcpBq, B R P˚
X ,Y ;

ρ̂ ě 0.

(5.4)

Let pφ̂˚, ψ̂˚, ρ̂˚q be an optimal solution to (5.3 - 5.4). Then complementary slackness
implies that, for any pA,wq P tpA,wq P 2XˆY ˆ pX ˆ Yq : w R Au,

ρ̂˚pA,wq
`

π˚pAY wq ´ π˚pAq
˘

“ 0.(5.5)
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Remark 5.1. The dual of the maximization problem

max
πPΠChpµ,νq

πpcq(5.6)

is given by

min
φ̂,ψ̂,ρ̂

ÿ

GĎX
φ̂pGqµpGq `

ÿ

FĎY
ψ̂pF qνpF q, subject to(5.7)

φ̂pGq ´
ÿ

wRGˆY
ρ̂pGˆ Y, wq `

ÿ

wPGˆY
ρ̂ppGˆ Yqztwu, wq “ KcpGˆ Yq, H ‰ G Ř X ;

ψ̂pF q ´
ÿ

wRXˆF

ρ̂pX ˆ F,wq `
ÿ

wPXˆF

ρ̂ppX ˆ F qztwu, wq “ KcpX ˆ F q, H ‰ F Ř Y;

φ̂pX q ` ψ̂pYq `
ÿ

w

ρ̂ppX ˆ Yqztwu, wq “ KcpX ˆ Yq;

´
ÿ

wRB

ρ̂pB,wq `
ÿ

wPB

ρ̂pBztwu, wq “ KcpBq, B R P˚
X ,Y ;

ρ̂ ď 0.

(5.8)

Suppose that pφ̂˚, ψ̂˚, ρ̂˚q is an optimal solution to (5.7 - 5.8). Then by complementary
slackness, for any pA,wq P tpA,wq P 2XˆY ˆ pX ˆ Yq : w R Au,

ρ̂˚pA,wq
`

π˚pAY wq ´ π˚pAq
˘

“ 0.

Remark 5.2. The dual of the minimization Optimal Transport problem is equivalent to the
problem

max
Lφ,Lψ ,ρ̂

ÿ

GĎX
mµpGqLφpGq `

ÿ

FĎY
mνpF qLψpF q, subject to(5.9)

LφpAX q ` LψpAYq `
ÿ

DĚA

ÿ

wPA

ρ̂pDztwu, wq “
ľ

px,yqPA

cpx, yq, H ‰ A Ď X ˆ Y;

ρ̂ ě 0.

(5.10)

To see this, we will show, by the following change of variables7

φ̂pGq :“
ÿ

BĚG

p´1q|BzG|LφpBq; ψ̂pF q :“
ÿ

AĚF

p´1q|AzF |LψpAq,

that the objectives are equal and that the constraints can be derived from each other.

First, the objective function becomes
ÿ

GĎX
φ̂pGqµpGq `

ÿ

FĎY
ψ̂pF qνpF q

“
ÿ

GĎX

ÿ

BĚG

p´1q|BzG|LφpBqµpGq `
ÿ

FĎY

ÿ

AĚF

p´1q|AzF |LψpAqνpF q

“
ÿ

BĎX

¨

˝

ÿ

GĎB

p´1q|BzG|µpGq

˛

‚LφpBq `
ÿ

AĎY

¨

˝

ÿ

FĎA

p´1q|AzF |νpF q

˛

‚LψpAq

7This corresponds to the situation derived from a set function ξφ, where φ̂ “ mξφ , and Lφ “ m̌ξφ , the
co-Möbius transform, with similar conventions for ψ, see (Grabisch, 2016, Table A.2, p. 440).
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“
ÿ

BĎX
mµpBqLφpBq `

ÿ

AĎY
mνpAqLψpAq.

To see that the constraints are equivalent, notice that the above transformation can be
inverted as

LφpGq “
ÿ

G1ĚG

φ̂pG1q; LψpF q “
ÿ

F 1ĚF

ψ̂pF 1q.

Furthermore, for any B Ď X ˆ Y, recall

KcpBq “
ÿ

AĚB

p´1q|AzB|
ľ

px,yqPA

cpx, yq.

Using the same inversion formula, we obtain
ľ

px,yqPA

cpx, yq “
ÿ

BĚA

KcpBq.

For any non-empty set A Ď X ˆ Y, sum all constraints with a right-hand side involving
KcpBq with B Ě A. The right-hand side term of (5.4) becomes

ÿ

BĚA

KcpBq “
ľ

px,yqPA

cpx, yq.

The sum of terms on the left-hand side of (5.4) will yield a sum involving φ̂, which is
ÿ

G1ĚAX

φ̂pG1q “ LφpAX q,

and a sum involving ψ̂, which is
ÿ

F 1ĚAY

ψ̂pF 1q “ LψpAYq.

Lastly, denoting the sum of all terms involving ρ̂ in (5.4) by S, we obatin

S “ J1 ` J2 ` J3 ` J4 ` J5 ` J6 ` J7,

where

J1 :“ ´
ÿ

G1ĚAX
G1‰X

ÿ

xRG1

yPY

ρ̂pG1 ˆ Y, px, yqq; J2 :“
ÿ

G1ĚAX
G1‰X

ÿ

xPG1

yPY

ρ̂pG1 ˆ Yztpx, yqu, px, yqq;

J3 :“ ´
ÿ

F 1ĚAY
F 1‰Y

ÿ

yRF 1

xPX

ρ̂pX ˆ F 1, px, yqq; J4 :“
ÿ

F 1ĚAY
F 1‰Y

ÿ

yPF 1

xPX

ρ̂pX ˆ F 1ztpx, yqu, px, yqq;

J5 :“
ÿ

xPX ,yPY
ρ̂pX ˆ Yztpx, yqu, px, yqq;

J6 :“ ´
ÿ

BĚA
BRP˚

X ,Y
px,yqRB

ρ̂pB, px, yqq; J7 :“
ÿ

BĚA
BRP˚

X ,Y
px,yqPB

ρ̂pBztpx, yqu, px, yqq.
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By summing the above terms, we obtain

S “ ´
ÿ

BĚA

ÿ

wRB

ρ̂pB,wq `
ÿ

DĚA

ÿ

wPD

ρ̂pDztwu, wq

“ ´
ÿ

BĚA

ÿ

wRB

ρ̂pB,wq `
ÿ

DĚA

»

–

ÿ

wPA

ρ̂pDztwu, wq `
ÿ

wPDzA

ρ̂pDztwu, wq

fi

fl

“
ÿ

DĚA

ÿ

wPA

ρ̂pDztwu, wq.

(5.11)

The last equality comes from the observation that there exists an one-to-one mapping be-
tween tpB,wq : A Ă B,w R Bu and tpD,wq : A Ă D,w P DzAu by the map D :“ B Y twu,
and thus the first and third terms in the second line of (5.11) cancel out. Therefore, one can
derive the equations in (5.10) from those in (5.4). Similarly, one can also prove the opposite
direction by using the above change of variables. □

Remark 5.3. By a similar argument, the dual of the maximization Optimal Transport
problem is equivalent to

min
Lφ,Lψ ,ρ̂

ÿ

GĎX
mµpGqLφpGq `

ÿ

FĎY
mνpF qLψpF q, subject to(5.12)

LφpAX q ` LψpAYq `
ÿ

DĚA

ÿ

wPA

ρ̂pDztwu, wq “
ľ

px,yqPA

cpx, yq, H ‰ A Ď X ˆ Y;

ρ̂ ď 0.

(5.13)

6. Numerical Examples

6.1. A Comparison with the Optimal Transport Problem for Additive Measures.
In this section, we compare the optimal transport problem for capacities with the classical
optimal transport problem (for measures) via numerical simulations. Assume that X and Y
are two finite subsets of R with |X | “ 30 and |Y| “ 20, and µ and ν are probability measures
on X and Y, respectively. Given the quadratic function cpx, yq “ px ´ yq2 on X ˆ Y, the
classical optimal transport problem is to find

min
πPΠapµ,νq

ż

XˆY
cpx, yq dπpx, yq;

while the optimal transport minimization problem for capacities seeks

min
γPΠChpµ,νq

γpcq,

where γpcq represents the Choquet integral of c with respect to γ. The latter problem will
have a lower minimum since its feasible set is larger.

We use the Python package AMPL to solve the linear program for the classical optimal
transport minimization. However, the linear program for the optimal transport for capacities
is quite large when both sets have cardinality greater than 5. For example, when |X | “ |Y| “

5, the number of variables in the linear program is 33,554,432, and the number of constraints
is 419,430,437. These numbers will become astronomical if |X | and |Y| exceed 20. For
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the case when |X | “ 30 and |Y| “ 20, the number of variables for the linear program is
larger than 10180, and the number of constraints is larger than 10183; while the number of
variables for the classical optimal transport problem is 600 and the number of constraints is
only 50. Therefore, in this case, solving the classical optimal transport problem using linear
programming methods is still fast, but the linear program for capacities cannot be solved
using numerical methods. However, using the explicit solution provided in Theorem 4.10,
the minimum can be computed in a few seconds even when |X | “ |Y| “ 100.

(a) plot with the line y “ x (b) log-log plot with the line y “ x

Figure 1. Comparison of the optimal values of the optimal transport prob-
lem for capacities with those of the optimal transport problem for additive
measures, when both marginals are additive measures.

For the case |X | “ 30 and |Y| “ 20, we run the following experiment 100 times. We
consider the spaces X “ t1, 2, 3, ..., 30u and Y “ t0, 2.2, 4.4, 6.6, ..., 41.8u, as well as the cost
function cpx, yq “ px´ yq2. To determine the marginal capacity µ, we simulate |X | ´ 1 “ 29

independent random variates from a uniform distribution on r0, 1s, and we let Upiq, i “

1, . . . , 29 be their order statistics (so that Upiq ď Upi`1q, and Up1q is the smallest observation).
Then set Up0q “ 0 and Up30q “ 1, and µptiuq “ Upiq ´Upi´1q, for i “ 1, . . . , 30. The µ capacity
(measure) of any other subset of X is determined by additivity. An analogous method is
used to simulate the marginal capacity ν on Y. For each pair of simulated capacities pµ, νq

generated in this fashion, we calculate the minima for both the optimal transport problem
for measures and the one for capacities, and we compare the resulting optimal values.

The horizontal coordinates of the blue dots in Figure 1a represent the optimal values of the
optimal transport problem for capacities; the vertical coordinates of the blue dots represent
the minimum values of the classical optimal transport problem.

We observe a trend that the greater the distance between the two marginal distributions,
the larger the ratio between OT minimum for measures over the OT minimum for capacities.
This trend is better revealed by the log-log plot in Figure 1b, showing that the one optimal
value appears to behave roughly like a power of the other. The difference between these two
minima implies that the classical optimal transport minimum over probability measures is
inaccurate in approximating the optimal transport minimum for capacities.

6.2. An Application in Counterparty Credit Risk. We consider a basic model in coun-
terparty credit risk, similar to the one used in Ghossoub et al. (2023). Consider a bank that
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trades with two counterparties whose credit exposures and the credit ratings at the end of
the year determine the counterparty credit risk losses of the bank over the next year. For
simplicity, we assume that there are four credit ratings, A, B, C, and D (default), with the
transition probabilities in Table 1.8

Initial State Year End State
A B C D

A 0.990 0.007 0.002 0.001
B 0.030 0.950 0.015 0.005
C 0.015 0.020 0.960 0.005
D 0 0 0 1

Table 1. Transition probabilities for a simplified credit rating system.

Assume that the initial credit ratings of counterparties 1 and 2 are B and C, respectively.
Due to ambiguity, we assume the joint rating Y “ pY1, Y2q of these two counterparties at the
year-end is represented by a capacity on Y of the form g ˝ P where gpxq :“ xs is a concave
distortion function with s P p0, 1s 9, and P is the law of a joint probability distribution with a
Gaussian copula. In particular, we let V “ pV1, V2q be a two-dimensional Gaussian random
vector with mean 0 and covariance matrix

ΣV “

˜

1 ρy

ρy 1

¸

,

and define Yi “ FÐ
i pΦpViqq, i “ 1, 2, where Fi is the marginal cumulative distribution

function of Yi. In particular, we have:

(6.1) Y1 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

D, if V1 ď Φ´1p0.005q;

C, if Φ´1p0.005q ď V1 ď Φ´1p0.02q;

B, if Φ´1p0.02q ď V1 ď Φ´1p0.97q;

A, if V1 ě Φ´1p0.97q,

where Φ is the standard normal cumulative distribution function. Y2 is defined similarly.

The cardinality of Y is 16. The probability of each pair of credit ratings can be calculated
using the bivariate Gaussian distribution. For example

P pY1 “ D,Y2 “ Dq “ Φ2pΦ´1p0.005q,Φ´1p0.005q; ρyq,

where Φ2 is the bivariate normal cumulative distribution function.

We assume that each counterparty exposure has a (marginal) binomial distribution. In
particular, we suppose that counterparty 1 has exposure X1 that follows binomial(n1, p1)
and counterparty 2 has exposure X2 that follows binomial(n2, p2). The random vector
pX1, X2q is taken to have a Gaussian copula with correlation ρx. We denote the corresponding
probability distribution on X by Q, and we assume that the marginal capacity µ “ Q (i.e.,
there is no distortion, or for the exposure capacity s “ 1).

8Table 1 is borrowed from Hardy and Saunders (2022).
9In particular, when s “ 1, this capacity is the same as the additive measure P .
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We take n1 “ 40, p1 “ 0.4, n2 “ 25, and p2 “ 0.7. Then the cardinality of X is pn1 ` 1q ¨

pn2 ` 1q “ 1066. Again, here the joint probabilities P
`

pX1, X2q “ pn,mq
˘

for 0 ď n ď n1

and 0 ď m ď n2 can be calculated using the cumulative bivariate Gaussian distribution.

Finally, we describe the loss function, which is the sum of the losses due to the credit
migrations of each counterparty:

(6.2) LpX,Y q “ X1 ¨ hpY1q `X2 ¨ hpY2q,

where the function h : tA,B,C,Du Ñ r0, 1s represents the fraction of total exposure that
will be lost in the next year, given the credit rating at the year-end. In this example, we
take hpAq “ 0, hpBq “ 0.1, hpCq “ 0.2, hpDq “ 1 (default).

We look for the maximum risk represented by a Choquet integral of the loss function L

against a capacity γ with prescribed marginal capacities µ and ν “ g ˝P, as described above
above. That is,

(6.3) max
γPΠpµ,νq

γpLq “ max
γPΠpµ,g˝P q

γpLq.

Note that, unlike the optimization problems in Section 6.1, one of the given marginals in
(6.3) is non-additive.

Figure 2 shows how the maximum varies along with changes in (a) the power s in the
distortion function, (b) the correlation ρx, or (c) the correlation ρy in the Gaussian copula.
We observe that the maximum risk is a decreasing and convex function of the distortion
parameter s. This accords with intuition, as the smaller the parameter s, the greater un-
certainty there is regarding the marginal distribution of the credit risk factors. With the
other parameters fixed, the maximum Choquet risk is an increasing and concave function of
the correlation in the copula defining the distribution of the exposure factors µ. Again, this
makes financial sense given the nature of our loss function. If the exposures were negatively
correlated, then an increase in the first term in the loss function L in (6.2) would tend to cor-
respond to a decrease in the second term. This diversification effect is amplified the greater
the magnitude of the negative correlation. Similarly, if ρx is large and positive, then the tail
of the losses will be fatter due to the tendency for large exposures to both counterparties to
occur simultaneously.

Perhaps most interesting is Figure 2c, which considers the impact of the correlation pa-
rameter of the copula of the credit risk factors on the maximum Choquet risk, as it reveals
the nature (and underlying conservatism) of the Choquet risk measure corresponding to the
capacity π˚. The most striking aspect of the plot in Figure 2c is that it is not monotone;
there is an interior maximum of π˚pLq as a function of ρy. To understand this, we consider
explicitly a simplified version of the model. In particular, we take X1 to be binomial with
parameters n1 “ 2 and p1 “ 0.4, X2 to be binomial with n2 “ 2 and p2 “ 0.7, and ρx “ ´0.3.
Based on this specification, we can compute the probabilities for the joint distribution of the
exposures pX1, X2q given in Table 2.

We further simplify the model by assuming only two credit states, default and no default,
with both firms starting in the no-default state, and with default probability PD “ 0.005.
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(a) Maximum Choquet risk as the distortion parameter s varies

(b) Maximum Choquet risk as ρx varies (c) Maximum Choquet risk as ρy varies

Figure 2. Sensitivity Analysis of the Maximum Choquet Risk for the coun-
terparty credit risk example.

X2 “ 0 X2 “ 1 X2 “ 2
X1 “ 0 0.09 0.27 0
X1 “ 1 0 0.15 0.33
X1 “ 2 0 0 0.16

Table 2. Joint exposure probabilities for the simplified counterparty credit
risk example.

The probability of both counterparties defaulting together is then

(6.4) pDDpρyq “ Φ2pΦ´1p0.005q,Φ´1p0.005q; ρyq,

while the probability of at least one of the counterparties defaulting is pD “ 0.01´ pDDpρyq.

Let U t “ tL ě tu, so that π˚pU tq “ minpµpU tX q, νpU tYqq “ minpQpU tX q,
b

P pU tYqq.
Here U tX is the set of px1, x2q for which there is some scenario for the credit factor Y

such that LpX,Y q ě t. Since we can take the credit scenario to be as extreme as possi-
ble (both counterparties default), reflecting the inherent conservatism in π˚, we see that
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U tX “ tpx1, x2q : x1 ` x2 ě tu. Simple calculations with the bivariate normal distribution
with ρx “ ´0.3 then lead to the data in Table 3.

t values U tX µpU tX q

t ą 4 H 0
3 ă t ď 4 tp2, 2qu 0.0494
2 ă t ď 3 tp1, 2q, p2, 1q, p2, 2qu 0.35
1 ă t ď 2 tp1, 0q, p0, 1q, p0, 0quc 0.8162
0 ă t ď 1 tp0, 0quc 0.9843
t ď 0 X 1

Table 3. Sets U tX and their capacities for the simplified counterparty
credit risk example.

Similarly, when considering U tY , we take the worst-case exposure scenario X1 “ X2 “ 2,
and find that U tY “ tpy1, y2q : hpy1q ` hpy2q ě t

2u. Recalling that νpU tYq “

b

P pU tYq, we
obtain the data in Table 4.

t values U tY νpU tYq

t ą 4 H 0
2 ă t ď 4 tpD,Dqu

a

pDDpρyq

0 ă t ď 2 tpA,Aquc
a

0.01 ´ pDDpρyq

t ď 0 Y 1

Table 4. Sets U tY and their capacities for the simplified counterparty credit
risk example.

A simple calculation then yields:

max
γPΠChpµ,νq

γpLq “

ż 8

0
π˚pL ě tq dt

“

ż 4

0
min

´

µpU tX q, νpU tY

¯

dt

“ 2
b

0.01 ´ pDDpρyq `

b

pDDpρyq ` 0.0494,

and it can be seen that this function has an interior maximum (as a function of ρy on r´1, 1s).
It is interesting to note that this behaviour depends on the parameters of our model, such
as the probabilities of the most extreme exposure and credit scenarios. For example, with
ρx “ 1 instead of ρx “ ´0.3, similar calculations give that π˚pLq “ 2p

a

0.01 ´ pDDpρyq `
a

pDDpρyqq, which is monotone increasing in ρy.

6.3. Comparison of Maximum Expected Shortfall and Maximum Choquet Risk
with Expected Shortfall Marginal Risks. In this subsection, we will compare the Cho-
quet risk measure defined in the current paper with the Maximum Expected Shortfall (MES)
studied in Ghossoub et al. (2023).

For a given loss random variable L defined on X ˆ Y, and for prescribed marginal prob-
ability measures µ on X and ν on Y, the maximum expected shortfall at confidence level α
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associated with L is defined as

MESαpLq :“ sup
πPΠapµ,νq

ESα,πpLq,

where ESα,π is the expected shortfall with respect to the probability measure π P Πapµ, νq.
In contrast to the maximum Choquet risk measure problem studied in this paper, when
determining MESα:

‚ The marginal probability distributions of the risk factors on X and Y are assumed to
be known with certainty (in contrast to the case of marginal capacities, which may
represent ambiguity about these marginal distributions).

‚ The joint risk measure is restricted to be the expected shortfall computed with respect
to some probability measure π P Πa (in contrast to the maximum Choquet risk
measure problem, in which we consider all possible Choquet risk measures on X ˆY
that match the given marginal Choquet risk measures on X and Y).

Since expected shortfall is a distortion risk measure, the MES can be written as:

(6.5) MESαpLq “ sup
πPΠapµ,νq

ż

Ldgαpπq,

where

gαpxq “

$

&

%

x
1´α , x P r0, 1 ´ αq,

1, x P r1 ´ α, 1s,

is the corresponding distortion function.

Explicitly, the Choquet Maximum Expected Shortfall (MES) can be defined as the max-
imum Choquet integral of the loss function against capacities with the same marginals as
gαpπq.

(6.6) CMESαpLq :“ sup
γPΠpgαpµq,gαpνqq

ż

Ldγ.

Since the feasible set for the maximum Choquet risk measure problem contains the feasible
set for the maximum expected shortfall problem, we have that CMESαpLq ě MESαpLq. In
Figure 3, we compare the values of CMESαpLq and MESαpLq for the loss random variable L
in the counterparty credit risk example described in the above subsection with different ρx
and ρy.

Throughout the experiments, we fix α “ 0.9. Assume that the counterparty 1 has initial
rating B and exposure X1 that follows binomial(40, 0.4) and that counterparty 2 has initial
rating C and exposure X2 that follows binomial(25, 0.7). In Figure 3a, the probability ν

corresponds to the law of joint rating Y “ pY1, Y2q, which can be calculated using bivariate
Gaussian distribution with correlation factor ρy “ 0.25; similarly, the probability µ corre-
sponds to the law of counterparty exposures X “ pX1, X2q, which can be determined using
bivariate Gaussian distributions with correlation factor ρx varying from ´1 to 1. We plot
both risk measures over different correlation factor ρx. When fixing ρx “ 0.35 and allowing
ρy change from ´1 to 1, we obtain Figure 3b.
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(a) MES v.s. CMES with different ρx (b) MES v.s. CMES with different ρy

Figure 3. Comparison between the Maximum Expected Shortfall (MES)
and the Choquet Maximum Expected Shortfall (CMES) using different levels
of the correlation parameters ρx and ρy.

From the figures, one can also observe that the ratio of CMES0.9pLq over MES0.9pLq is
between 130% to 160%. This ratio depends on the parameter α and the two given distri-
butions, µ and ν, which are eventually determined by the parameters n1, p1, n2, p2, ρx, ρy,
and the values in Table 1.

7. Conclusion

This paper investigates the problem of bounding a Choquet risk measure of a nonlinear
function of two risk factors. Specifically, we assume given (marginal) capacities on the
marginal spaces, representing the ambiguous distributions of the risk factors, and we consider
the problem of finding the joint capacity on the product space with these given marginals,
which maximizes or minimizes the Choquet integral of a given portfolio loss function.

We treat this problem as a generalization of the optimal transport problem to the setting
of nonadditive measures. We provide explicit characterizations of the optimal solutions
for finite marginal spaces, and we investigate some of their properties. Furthermore, we
investigate the relationship between properties of the marginal capacities and those of the
optimizers (and, more generally, capacities in the feasible set). In particular, we show that
the minimizing capacity π˚ is balanced if and only if both marginal capacities are balanced,
and we describe its core explicitly in that case. In contrast, in all but the most trivial cases,
the maximizing capacity π˚ is not balanced.

We further discuss the connections with linear programming, showing that the optimal
transport problems for capacities are linear programs, and we also characterize their duals
explicitly. We investigate a series of numerical examples, including a comparison with the
classical optimal transport problem, and applications to counterparty credit risk.
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